Computers in Industry 65 (2014) 622-635

COMPUTERS IN -
INDUSTRY, -

Contents lists available at ScienceDirect

Computers in Industry

journal homepage: www.elsevier.com/locate/compind

Debugging measurement systems using a domain-specific
modeling language

P
® CrossMark

TomaZ Kosar **, Marjan Mernik ¢, Jeff Gray ¢, TomaZ Kos "

2 University of Maribor, Faculty of Electrical Engineering and Computer Science, Smetanova ulica 17, 2000 Maribor, Slovenia
Y DEWESoft d.o.0.” Gabrsko 11a, 1420 Trbovlje, Slovenia

€University of Alabama, Department of Computer Science, Tuscaloosa, AL 35487, USA

d University of Maribor, Faculty of Electrical Engineering and Computer Science, Smetanova ulica 17, 2000 Maribor, Slovenia

ARTICLE INFO ABSTRACT

Article history:

Received 1 March 2013

Received in revised form 14 October 2013
Accepted 21 January 2014

Available online 23 February 2014

Capturing physical data in the context of measurement systems is a demanding process that often
requires many repetitions with different settings. To assist in this activity, a domain-specific modeling
language (DSML) called Sequencer has been developed to enable the improved definition of
measurement procedures. With Sequencer, the level of abstraction has been raised and sophisticated
changes in measurement procedures are now enabled. Although there are numerous DSMLs like
Sequencer in the existing literature, there are some obstacles working against the more widespread
adoption of DSMLs in practice. One challenge is the lack of supporting tools for DSMLs, which would
improve the capabilities of end-users of such languages. For instance, support for debugging a model
expressed in a DSML is often neglected. The lack of a debugger at the proper abstraction level limits the
domain experts in discovering and locating bugs in a model. In this paper, Sequencer is presented
together with debugging facilities (called Ladybird) that are integrated in a modeling environment.
Ladybird supports different execution modes (e.g., steps, breakpoints, animations, variable views, and
stack traces) that can be helpful during the debugging of a model. Ladybird’s primary contribution is in
showing the value of error detection in complicated industrial environments, such as data acquisition in
automotive testing. The paper contributes to a discussion of the implementation details of DSML
debugging facilities and how such a debugger can be reused to support domains other than the
measurement context of Sequencer.

Keywords:

Debugging aid

Domain-specific modeling languages
Graphical environments

Usage experience

© 2014 Elsevier B.V. All rights reserved.

1. Introduction (DSMLs) [12,13], which often use a visual notation rather than
textual representation and remain more expressive at a higher

Domain-specific languages (DSLs) [1-3] allow domain experts abstraction level than GPLs.

to play a vital role in the software development process. Empirical
evidence has shown that productivity increases with DSL adoption
when compared with the traditional code-driven software
development process [4,5] that uses general-purpose languages
(GPLs), such as Java or C++. The adoption of a DSL raises the level of
abstraction [6,7] and connects the concepts from the problem and
solution domains [8,9]. Domain experts, who have skills in the
problem domain, but may not have formal training in computer
science, can write their own domain-specific programs to solve a
specific need in their domain [10]. DSLs can be further sub-divided
into specification, modeling, and programming languages [11]. In
this paper, we focus on domain-specific modeling languages

* Corresponding author. Tel.: +386 41559205.
E-mail addresses: tomaz.kosar@uni-mb.si (T. Kosar), marjan.mernik@uni-mb.si
(M. Mernik), gray@cs.ua.edu (J. Gray), tomaz.kos@dewesoft.si (T. Kos).

0166-3615/$ - see front matter © 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.compind.2014.01.013

In measurement systems, both mechanical equipment and
measurement settings have to be tested from various points of
view. If traditional software tools based on GPLs are used, this
process can be simplified by using the prepared test procedures to
speed up the testing process and to analyze the measurement
results. However, prepared tests are often insufficient and tests
need to be changed, or even developed from scratch. Therefore, it
would be a significant contribution to support domain experts
with the ability to model measurement procedures on their own.
This can be achieved by developing an appropriate DSML, which is
very suitable for the construction of measurement systems [14],
where physical data are captured and the conversion of these
results into a digital form is performed [15]. To improve flexibility
and productivity, DEWESoft [16] developed a DSML called
Sequencer [17], which enables domain experts to model and
evolve their own measurement procedures without any help from
programmers. In Sequencer, the measurement procedure can be

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2014.01.013&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2014.01.013&domain=pdf
http://dx.doi.org/10.1016/j.compind.2014.01.013
mailto:tomaz.kosar@uni-mb.si
mailto:marjan.mernik@uni-mb.si
mailto:gray@cs.ua.edu
mailto:tomaz.kos@dewesoft.si
http://www.sciencedirect.com/science/journal/01663615
www.elsevier.com/locate/compind
http://dx.doi.org/10.1016/j.compind.2014.01.013

T. Kosar et al./ Computers in Industry 65 (2014) 622-635 623

constructed in a textual or visual manner. To the best of our
knowledge, specialized measurement systems [18,19] do not allow
the construction of measurements to such an extent. Also, existing
tools are adjusted specifically to the type of test and are limited in
their flexibility and usefulness. These tools (when compared with
Sequencer) are limited to one type of hardware vendor, while
DEWESoft supports many different types of hardware from various
vendors. Moreover, with existing tools it is impossible to hide the
unimportant details of the measurements (e.g., Sequencer allows
customizations for specific tests, while specialized measurement
systems usually support limited flexibility of displayed data during
measurements). DEWESoft addresses these shortcomings in
Sequencer, where end-users can adjust the measurement and
control procedures, while tailoring them to their specific needs by
writing an additional sequence (measurement procedure).

However, sequences may become complex such that domain
experts face several challenges when trying to detect bugs in the
models. Bugs may occur due to specification errors (e.g., semantic
errors) or measurement errors (e.g., hardware malfunction). To
facilitate sequence construction, the domain expert must be
empowered with dedicated tools to improve measurement
procedures. Usually, DSML tools other than model compilers
(i.e., transformations from models to some other artifact) are most
often not available. However, the utility of a DSML is seriously
diminished if the supporting tools (e.g., a debugger) needed by a
software developer are not available. In this paper, we describe
debugging features in a tool called Ladybird, which is integrated in
the modeling environment Sequencer [17]. The debugging
facilities of Ladybird (e.g., execution modes, steps, breakpoints,
animations, print statements, variable view, and stack traces)
enable end-users to simultaneously watch multiple models, and
during the execution, monitor and alter the state of a running
model. Sequencer, as well as features of Ladybird, has been applied
to automotive domain,! where the quality of the car and its parts
are subjected to testing procedures.

The remainder of this paper is organized as follows. Section 2
describes related work on DSMLs, debuggers, and measurement
systems. Section 3 highlights the DEWESoft system and gives some
details about specific domains where the measurement system has
been used. Section 4 explains the architecture of Sequencer and
introduces the details of the domain-specific modeling language
and the modeling tool. Ladybird, Sequencer’s debugger, is
discussed in Section 5 and implementation details of debugging
support are presented in Section 6. A demonstration on a real case
scenario is illustrated in Section 7. Discussion follows in Section 8.
Finally, Section 9 provides concluding remarks and summarizes
the main features of the Ladybird model debugger for the
DEWESoft measurement system.

2. Related work

This section provides an overview of related work in the area of
model debuggers and measurement systems.

2.1. An overview of model debuggers

The benefits of using a DSML in software engineering are still
not realized fully because the software development lifecycle using
DSMLs is often not supported by the appropriate tools. As observed
in the case of functional languages, there were several factors that
led to the resistance of functional languages in mainstream
development: the lack of debuggers and profilers, inadequate
support by Integrated Development Environments (IDEs), and poor

1 Sequencer has been applied successfully in the automotive industry
(e.g., General Motors).

interoperability [20]. These same factors can all be considered
contributing factors for the software industry’s resistance to
DSMLs. Hence, it is crucial that more work is devoted to DSML
tooling [21]. In particular, we are interested in DSML debugging
tools. We believe that in the future, DSML debuggers will be
generated automatically from metamodels. However, we need to
gather enough experience and knowledge from the development
of specific DSML debuggers in order to generalize the case to
support automatic generation. Our work in this paper is a step
toward that direction. Despite the fact that metamodeling tools
(e.g., MetaEdit+ [12,22], GME [23], EMF [24]) do not automatically
generate DSML debuggers, we will briefly describe GME tool and
its capabilities. The situation is better for textual DSLs, where some
tools have integrated DSL debuggers (e.g., MPS [25]).

The GME [23] is a metamodeling tool that is similar in purpose
to MetaEdit+ [12,22], but differs in its specific use. The metamodel
in GME is depicted with a UML class diagram [26] showing
elements of the DSML and how they can be associated with each
other. Numerous DSMLs have been built using GME (e.g., POSAML
[27], PICML, CQML, CUTS [28]). It is important to note that while
these tools (e.g., MetaEdit+, GME) are advantageous in construct-
ing DSMLs, they do not support model debugging at a level of
abstraction that can be used by most domain experts. Hence,
debugging can be performed at the code level only, but not at the
model level. At most, one can use the modeling tool API for viewing
and manipulating a model’s internal representation, which is not
sufficient for most end-users.

Developing a DSL debugger from scratch can be very expensive.
Therefore, Wu et al. [29] proposed a grammar-driven technique to
build a DSL debugger, where the debugger could be generated
automatically with minimal additional effort by reusing an existing
GPL debugger. However, their approach is applicable only when a
DSL is implemented using source-to-source translation of a textual
language, where a line of DSL code is consecutively translated into
many lines of GPL code. By keeping track of the DSL code to GPL code
translation, a GPL debugger can be reused, but debugger actions like
“step into” and “step over” have to be reimplemented. Wu et al.’s
framework has been extended to generate DSL testing tools
automatically, but with similar limitations [30].

In the case of DSML debugging, relevant works are rare.
Mannadiar and Vangheluwe proposed a conceptual mapping of
debugging concepts from programming languages to DSMLs [31].
Language primitives (e.g., print statements, assertions, and
exceptions) and debugger primitives (e.g., execution modes, steps,
runtime variable I/O, breakpoints, jumps, and stack traces), which
are commonly found debugging facilities in programming
languages were mapped into a DSML debugger, forming a starting
point for DSML debugger development. As a proof of concept,
Mannadiar and Vangheluwe prototyped debugging concepts into a
successor of the ATOM? tool [32]. They also pointed out two
different facets of DSML debugging: the debugging of model
transformations, and the debugging of domain-specific models. In
our work, special attention will be given to the latter, but initial
work in the former is represented by Hibberd et al. [33]. In our
work, debugging concepts from [31] have been used in the
implementation of the Ladybird debugging tool described in this
paper.

Blunk et al. [34] presented an approach for modeling debuggers
for a DSML. Their approach requires a metamodel-based descrip-
tion of the abstract syntax of the language (e.g., defined in the
Eclipse Modeling Framework - EMF [35]). Debugging is then
described with operational semantics at the metamodeling level,
where possible runtime states are modeled as part of a DSL
metamodel and transitions are defined as a model-to-model
transformation. Blunk et al. demonstrated their approach on
breakpoints by stepping over lines of a DSL designed for voice

Download English Version:

https://daneshyari.com/en/article/508880

Download Persian Version:

https://daneshyari.com/article/508880

Daneshyari.com

https://daneshyari.com/en/article/508880
https://daneshyari.com/article/508880
https://daneshyari.com

