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a b s t r a c t

This paper investigates the returns to scale of large banks in the US over the period 1997–2010. This
investigation is performed by estimating a random coefficient stochastic distance frontier model in the
spirit of Tsionas (2002) and Greene (2005, 2008). The primary advantage of this model is that its coeffi-
cients can vary across banks, thereby allowing for unobserved technology heterogeneity among large
banks in the US We find that failure to consider unobserved technology heterogeneity results in a mis-
leading ranking of banks and mismeasured returns to scale. Our results show that the majority of large
banks in the US exhibit constant returns to scale. In addition, our results suggest that banks of the same
size can have different levels of returns to scale and there is no clear pattern among large banks in the US
concerning the relationship between asset size and returns to scale, due to the presence of technology
heterogeneity.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Over the past two decades, the increasing dominance of large
banks in the US banking industry, caused by fundamental regula-
tory changes and technological and financial innovations, has stim-
ulated considerable research into returns to scale at large banks in
the US. Specifically, major regulatory changes include the removal
of restrictions on interstate banking and branching and the elimi-
nation of restrictions against combinations of banks, securities
firms, and insurance companies, while technological and financial
innovations include, but are not limited to, information processing
and telecommunication technologies, the securitization and sale of
bank loans, and the development of derivatives markets. One of the
most important consequences of these changes is the increasing
concentration of industry assets among large banks. According to
Jones and Critchfield (2005), the asset share of large banks (those
with assets in excess of $1 billion) increased from 76 percent in
1984 to 86 percent in 2003. In the meantime, the average size of
those banks increased from $4.97 billion to $15.50 billion. This
has raised concern that some banks might be too large to operate

efficiently, stimulating a substantial body of research into returns
to scale at large banks in the US. For excellent reviews, see Berger
et al. (1993, 1999).

However, few articles explicitly allow production technology to
be heterogeneous, even though studies have found that unob-
served technology heterogeneity is widely present in the US bank-
ing industry. For example, a growing body of literature (Saloner
and Shepard, 1995; Akhavein et al., 2005) suggests that diffusion
of new technologies among banks takes time, because banks adopt
new technologies at different times according to factors such as
bank size, organizational structure, profitability, geographic loca-
tion, and market structure. Specifically, Akhavein et al. (2005) finds
that out of a sample of 96 large banks in the US, banks with more
branches adopt new technologies earlier, as do those located in the
New York Federal Reserve district. This slow diffusion process sug-
gests that large banks in the US do not always have access to the
same technologies. To give another example, many studies (Coles
et al., 2004; Berger et al., 2005) have found that banks with differ-
ent organizational structures use different production technolo-
gies. Specifically, centralized banks with their hierarchical
structures tend to employ ‘‘hard’’1 information-based production
technologies (such as credit scoring technologies), whereas decen-
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tralized banks with their flatter organizational structures tend to
employ ‘‘soft’’ information-based production technologies (such as
traditional underwriting techniques). Further, these studies (for
example, Canales and Nanda, 2012) finds that large banks differ in
the degree of ‘‘centralizedness’’, indicating that these banks may
use different combinations of ‘‘hard’’ and ‘‘soft’’ information-based
production technologies. To give a third example, a number of stud-
ies found that banks with different business models tend to employ
different production technologies. For instance, Rossi (1998) find
that mortgage banks (whether large or small) rely more heavily on
automated lending technologies than do full-service commercial
banks. In sum, all of these examples indicate that unobserved tech-
nology heterogeneity is widespread among large banks in the US,
thus calling for a model that is suitable for modeling returns to scale
in the presence of unobserved technology heterogeneity.

For the first time in this literature, we estimate a random coef-
ficient translog stochastic distance frontier (SDF) model, which al-
lows for unobserved technology heterogeneity. Essentially, this
model is a variant of the random coefficient stochastic cost frontier
model proposed by Tsionas (2002), with the former model based
on the output distance function and the latter model based on
the cost function. The main feature of this model is that its coeffi-
cients can vary across banks, thus allowing production technology
to be heterogeneous across banks. Econometrically, this model can
be obtained by permitting the coefficients of the standard fixed
coefficient SDF model to vary across banks by drawing the
coefficients from a multivariate normal distribution. More specifi-
cally, this drawing process can be achieved by first decomposing
the bank-specific coefficient vector (denoted by bi, where
i ¼ 1;2; . . . ;K indexes banks and K is the number of banks) into
two parts: a mean vector (denoted by �b) and a random vector
(denoted by di) and then drawing the random vector from a multi-
variate normal distribution with mean zero. For excellent discus-
sions on the specification of random coefficient stochastic
frontier models, see Tsionas (2002) and Greene (2005, 2008).

A major advantage of the random coefficient translog SDF mod-
el over the commonly-used fixed coefficient SDF model is that the
former model can provide a much better approximation to under-
lying arbitrary heterogeneous technologies than the latter model.
This is because the fixed coefficient translog SDF model can only
approximate the underlying true ‘average’ technology to the sec-
ond order, whereas the random coefficient translog SDF model
can not only approximate the underlying true average technology
to the second order via its mean coefficients (i.e. �b), but can also
approximate each of the underlying true heterogeneous technolo-
gies to the second order via its firm-specific coefficients (i.e. bi).
Specifically, let y denote the 1�M vector of outputs, x denote
the 1� N vector of inputs, and w � ðy; xÞ denote the output and in-
put vector. In addition, let f iðwÞ (for i ¼ 1;2; . . . ;K), a set of arbi-
trary output distance functions, represent the underlying ‘true’

heterogeneous technologies; ln Di
oðwÞ (for i ¼ 1;2; . . . ;K) denote

the random coefficient translog output distance function; and
ln DoðwÞ denote the fixed coefficient translog output distance func-
tion. For the random coefficient translog output distance function,
it is straightforward to show by following the spirit of Diewert
(1973) that the firm-specific translog output distance function,

ln Di
oðwÞ, can approximate its corresponding arbitrary output dis-

tance function, ln f iðwÞ, to the second order at a point w⁄, by solv-

ing the system of equations: ln Di
oðw�Þ ¼ ln f iðw�Þ; @ ln Di

oðw�Þ=@ ln
wm ¼ @ ln f iðw�Þ=@ ln wm (for m ¼ 1;2; . . . ;M � 1;M þ 1; . . . ;M � 1

þN), and @2 ln Di
oðw�Þ=@ ln wm@ ln wn ¼ @2 ln f iðw�Þ=@ ln wm@ ln wn

(for 1 < m < n < M þ N).2 With bi determined by solving the above

system of equations, it is also straightforward to show that the
translog output distance function with the mean coefficient vector
(i.e. �b) can approximate the true ‘average’ technology (i.e.PK

i¼1 ln f i w�ð Þ
h i

=K) to the second order.3 For the fixed coefficient

translog output distance function, note that it can be obtained from
the random coefficient output distance function by setting the ran-
dom component of bi to zero (i.e. di ¼ 0). In other words, the fixed
coefficient translog output distance function is essentially the tran-
slog output distance function with the mean coefficient vector (i.e.
�b), suggesting that the fixed coefficient translog output distance
function can also approximate the true ‘average’ technology (i.e.PK

i¼1 ln f iðw�Þ
h i

=K) to the second order. However, unlike its random

coefficient counterpart, the fixed coefficient translog output distance
function is incapable of approximating ln f iðw�Þ to the second order.

The advantage of the random coefficient translog SDF model in
approximating the underlying ‘true’ heterogeneous technologies
means that we can estimate the returns to scale for each bank with
more accuracy. As discussed above, with the random coefficient
SDF model we can obtain a separate frontier for each bank (i.e.
ln Di

oðwÞ), implying that we can measure returns to scale for each
bank on the bank’s own frontier. In contrast, with the fixed coeffi-
cient SDF model we can only obtain one single frontier that pro-
vides a second order approximation to the true ‘average’
technology, implying that we are restricted to measuring returns
to scale for all banks on this single frontier. This restriction implies
that estimates of returns to scale for all banks that do not operate
with the average technology would be biased. The consequences of
this bias can be serious, especially when production technologies
are very heterogeneous because in this case technologies for most
banks would be different from the average technology. Taking our
empirical results on the US large banks for example, we compute
the difference or bias in returns to scale (in absolute value) be-
tween the fixed coefficient SDF model and the random coefficient
SDF model for each bank and find that the mean of the bias can
be as large as 0.0735 and the maximum of the bias can be as large
as 0.3752. We also calculate the Spearman rank correlation coeffi-
cient between the ranking based on the fixed coefficient SDF model
and that based on the random coefficient SDF model, and find that-
due to the biases, there is little correlation between the two rank-
ings. Thus to avoid the bias associated with the fixed coefficient
SDF model, we choose to apply the random coefficient SDF model
in this paper.

The random coefficient SDF model is estimated within a
Bayesian framework. The primary reason for the choice of a
Bayesian approach is that in contrast to the EM algorithm that
is commonly used for finding maximum likelihood estimates of
parameters in stochastic frontier models, the Bayesian procedure
used in this study can produce, for each individual bank, a set of
posterior distributions for all the model parameters (including
latent variables) and any quantity of interest that can be
computed as a function of the model parameters (Tsionas,
2002). In particular, the Bayesian procedure enables us to obtain,
for each individual bank, a posterior distribution for our measure
of returns to scale that can be computed as a nonlinear function
of the parameters of the output distance function. In practice,
this posterior distribution enables us to compute a credible
interval for returns to scale for each bank in each period, which
in turn can be used to determine if the bank faces increasing,
constant, or decreasing returns to scale in the period (see
Section 5.3).

Finally, we apply the above framework to the banks in the US
with assets in excess of $1 billion. Our results show that the

2 A detailed proof is available on request. 3 A detailed proof is available on request.
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