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a b s t r a c t

We provide methodologies to price discretely monitored exotic options when the underlying evolves
according to a double exponential jump diffusion process. We show that discrete barrier or lookback
options can be approximately priced by their continuous counterparts’ pricing formulae with a simple
continuity correction. The correction is justified theoretically via extending the corrected diffusion
method of Siegmund (1985). We also discuss the jump effects on the performance of this continuity cor-
rection method. Numerical results show that this continuity correction performs very well especially
when the proportion of jump volatility to total volatility is small. Therefore, our method is sufficiently
of use for most of time.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Discrete (path-dependent) options are financial derivatives
whose payoffs are determined by the underlying asset price levels
at some preset points of time. This feature is also called ‘‘discrete
monitoring’’. Among the many types of discrete options, two of
the most popular ones are called barrier options and lookback op-
tions. Because of its popularity, knowing how to price a discrete
barrier or lookback option quickly and accurately becomes a criti-
cal task in practice. Generally, such discrete scheme does not allow
for a closed-form pricing formula, making experts resort to approx-
imation methods instead.

One attempt to address this problem, initiated by Broadie et al.
(1997), is to approximate a discrete option price by the price of a
theoretical counterpart that assumes ‘‘continuous monitoring’’
(i.e., the payoff depends on the whole underlying price level during
the contract life). This approach is termed as ‘‘continuity correc-
tion’’ in the literature. Related works include Broadie et al.
(1999), Kou (2003), and Hörfelt (2003), among others. However,
all of these studies regarding barrier and lookback options were
conducted under the classical Black–Scholes (BS) Model, which is

commonly recognized as unsuitable for describing the empirical
distribution of a financial asset price.

Since their works, discretely monitored options have received
more and more attention in the literature. There are many studies
that have attempted to price such featured options under various
models by proposing different numerical methods. For example,
Ballestra et al. (2007) gave an approximation method for the tran-
sition probability to price exotic discrete options under Heston’s
stochastic volatility (SV) model, and Feng and Linetsky (2008) uti-
lized Hilbert transforms to deal with discrete single- and double-
barrier options in Lévy process-based models. Although these skills
can approximate option prices well, typically they are not as effi-
cient as the correction method.

Therefore, in this study, we follow the line of continuity correc-
tion approach but with a more sophisticated model. Specifically,
we establish a such correction under Kou’s (2002) Double Expo-
nential Jump Diffusion Model (DEJDM), by proposing a modified
Siegmund’s corrected diffusion approximation. Surprisingly, the
relevant correction terms do not seem to be affected by the pres-
ence of jumps, and hence remain the same as in the BS setting.
One likely explanation is that the jump effect has been absorbed
into the continuous-time pricing formula. Such offered analytical
approximation formulas are of great use, not only for pricing, but
also for risk management.

Although our technique seems to be applicable for general Jump
Diffusion Models (JDMs), the verification involved is a bit too
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subtle and complicated to get the insight. In turn, we focus on
DEJDM, which has analytical pricing formulae, and address some
implementation issues on jump effects. Particularly, we notice that
the proposed approximation is sufficiently useful, provided that
the proportion of the total volatility coming from jump uncertainty
is small. Therefore, our contribution to the literature covers not
only theoretical justifications but also practical guidelines.

On the other hand, our approach of continuity correction
(regarding barrier options) does not require restrictions on strike
prices and barrier levels as they previously did in the BS studies.
Numerical analysis also confirms this property. Since the chosen
jump model nets the BS model, our results indeed provide a com-
plete complement to the BS literature in this regard.

The rest of the paper will be developed as follows. Next section
sketches the methodology and indicates the key concepts and dif-
ficulties behind, while Section 3 presents all resulting approxima-
tion formulae. A numerical analysis is given in Section 4, where we
further explore the role of jumps. Final section concludes the study,
and detailed proofs can be found in the Appendix.

2. Methodology overview

2.1. Barrier option

The payoff of a (European) barrier option on an asset St with
maturity date T > 0 can be generally expressed as

XT ¼ f ðSTÞ � 1AT : ð1Þ

Expression (1) says that the holder of the option will be paid off an
amount, f(ST), provided that the event AT occurs during the contract
life. Typically, the function f will be (ST � K)+ (call type) or (K � ST)+

(put type) with strike price K, while the event AT describes a bound-
ary-crossing problem that can be expressed as {s 6 T} or {s > T}.
Here, s stands for the so-called first-passage time (stopping time),
which can be an abbreviation of

�sðHÞ ¼ inf ft 2 Rþ : St P Hg sðHÞ ¼ inf ft 2 Rþ : St 6 Hgð Þ
ð2Þ

or

�smðHÞ ¼ inf fn 2 Zþ : Sn�Dt P Hg ðsmðHÞ ¼ inf fn 2 Zþ : Sn�Dt 6 HgÞ:
ð3Þ

In the above, H denotes the barrier level, and Dt = T/m with m 2 N

being the frequency of monitoring. Note also that both Rþ and Zþ
include 0.

The path-dependent property of a barrier option is exactly cap-
tured by the notation s. The s described in parenthesis is viewed as
of down-type (assuming H < S0); otherwise, it belongs to up-type
(assuming H > S0 instead). According to the classical arbitrage-pric-
ing theory, the price (V) of an option is just the expectation of its
discounted payoff under a chosen pricing probability measure
(P). That is to say, in the current case, the price of a barrier option
at time zero is given by

V ¼ E½e�rTX T � ð¼ EP ½e�rTXT �; for notational convenienceÞ: ð4Þ

Here, for simplicity, we assume the risk-free rate r is constant. Note
that the market is incomplete in a JDM; thus, the measure P is just
one risk-neutral measure. In this paper, we merely assume its exis-
tence1 and all the settings and operations hereafter are directly
based on this given P.

In this paper, options with feature (2) refer to continuous op-

tions, while those with (3) refer to discrete ones. Most option-pric-
ing models assume (2) holds theoretically since Stochastic Calculus
can be applied, leading to closed-form pricing formulas. However,
in the real world, most contracts adopt a discrete scheme (3) for
ease of implementation. Although the pricing theory is still appli-
cable, no convenient formula can now be obtained.

Let V(H) and Vm(H) be, respectively, the initial value of a contin-
uous barrier option and a discrete counterpart, with the other
parameters being equal. At first, practitioners simply regarded
these two values as approximately the same. This is true ideally
especially when m is large, since the variables in (2) and (3) are
said to converge weakly as Dt goes to zero. But it was later recog-
nized that the rate of convergence would be so slow that signifi-
cant pricing errors could arise.

For that reason, Broadie et al. (1997) proposed a way, by apply-
ing methods in Sequential Analysis, to accelerate the speed of con-
vergence between Vm and V under the classic BS model.
Specifically, they claimed that

VmðHÞ ¼ VðHe�r
ffiffiffiffi
Dt
p

bÞ þ oð1=
ffiffiffiffiffi
m
p
Þ ð5Þ

with some restrictions on K and H. Here ± is for case �s (up-type)/s
(down-type). Basically, the approximation formula (5) indicates
that, one should shift away the barrier level first before directly
applying the continuous-time formula to approximate the price va-
lue of a discrete counterpart. This approach is termed as ‘‘continuity
correction’’ in the literature, and is now widely used in practice; see,
for example, Chapter 25 of the textbook Hull (2011).

The intuition of such a correction is based on the following two
observations under discrete monitoring: first, the boundary-cross-
ing probability will be lower in discrete time than in continuous
time; and second, there will always be an overshoot in discrete
time. (We say an overshoot occurs if Ss – H, and denote by jSs � Hj
the amount of overshoot.) The overshoot phenomenon is shown in
Fig. 1. Therefore, the shifting away of the barrier level accounts for
the less boundary-crossing probability, and the adjusted (shifted)
amount is somehow the expectation of the overshoot.

Note that there will be no overshoot with continuous monitor-
ing under the BS model thanks to the continuous sample-path
property of a diffusion process. Nevertheless, many empirical stud-
ies have shown that some financial asset processes have demon-
strated discontinuities. Such a discontinuity is usually regarded
as the result of a big event, like the bankruptcy of a company or
a market crash. Straightforwardly, this makes researchers start to
consider a JDM, the BS model plus a jump model, which can easily
incorporate this discontinuity feature.

The situation for continuity correction becomes more compli-
cated when we move to a JDM. The new challenge here will be
at least twofold. First, there could be an overshoot even under con-

Fig. 1. An overshoot problem with discrete monitoring.

1 For DEJDM, Kou (2002) showed a P can be determined by using a general
equilibrium argument with a HARA-type utility for the representative agent.
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