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a b s t r a c t

We carry out a comprehensive investigation of shrinkage estimators for asset allocation, and we find that
size matters—the shrinkage intensity plays a significant role in the performance of the resulting estimated
optimal portfolios. We study both portfolios computed from shrinkage estimators of the moments of
asset returns (shrinkage moments), as well as shrinkage portfolios obtained by shrinking the portfolio
weights directly. We make several contributions in this field. First, we propose two novel calibration cri-
teria for the vector of means and the inverse covariance matrix. Second, for the covariance matrix we pro-
pose a novel calibration criterion that takes the condition number optimally into account. Third, for
shrinkage portfolios we study two novel calibration criteria. Fourth, we propose a simple multivariate
smoothed bootstrap approach to construct the optimal shrinkage intensity. Finally, we carry out an
extensive out-of-sample analysis with simulated and empirical datasets, and we characterize the perfor-
mance of the different shrinkage estimators for portfolio selection.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The classical mean–variance framework for portfolio selection
proposed by Markowitz (1952) formalizes the concept of invest-
ment diversification, and it is widely used nowadays in the invest-
ment industry. To compute mean–variance portfolios, one needs to
estimate the mean and covariance matrix of asset returns. One
possibility is to replace these quantities with their sample estima-
tors, but these are obtained from historical return data and contain
substantial estimation error. As a result, mean–variance portfolios
computed from sample estimators perform poorly out of sample;
see, for instance, Jobson and Korkie (1981), Best and Grauer
(1991), Broadie (1993), Britten-Jones (1999) and DeMiguel et al.
(2009).

One of the most popular approaches to combat the impact of
estimation error in portfolio selection is to use shrinkage
estimators, which are obtained by ‘‘shrinking’’ the sample

estimator towards a target estimator.1 The advantage is that while
the shrinkage target is usually biased, it also contains less variance
than the sample estimator. Thus it is possible to show under general
conditions that there exists a shrinkage intensity for which the
resulting shrinkage estimator contains less estimation error than
the original sample estimator; see James and Stein (1961). The key
then is to characterize the optimal trade-off between the sample
estimator (low bias), and the target (low variance). In other words,
shrinkage estimators can help reduce estimation error, but the
shrinkage intensity (size) matters.

In this paper, we make an extensive investigation of shrinkage
estimators for portfolio selection. We study both portfolios com-
puted from shrinkage estimators of the moments of asset returns
(shrinkage moments), as well as shrinkage portfolios obtained by
shrinking directly the portfolio weights computed from the origi-
nal (un-shrunk) sample moments.
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1 Other approaches proposed to combat estimation error in portfolio selection
include: Bayesian methods (Barry, 1974; Bawa et al., 1979), Bayesian methods with
priors obtained from asset pricing models (MacKinlay and Pastor, 2000; Pastor, 2000;
Pastor and Stambaugh, 2000), robust optimization methods (Cornuejols and Tutuncu,
2007; Goldfarb and Iyengar, 2003; Garlappi et al., 2007; Rustem et al., 2000; Tutuncu
and Koenig, 2004), Bayesian robust optimization (Wang, 2005), robust estimation
methods (DeMiguel and Nogales, 2009), and imposing constraints (Best and Grauer,
1992; Jagannathan and Ma, 2003; DeMiguel et al., 2009).
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Constructing shrinkage estimators is a three-step procedure.
First, define the shrinkage target. Second, choose the calibration
criterion that determines the shrinkage intensity. Third, use the
available data to estimate the shrinkage intensity that optimizes
the calibration criteria. Our work contributes mainly to the last
two steps by proposing new calibration criteria, and providing
parametric and nonparametric approaches to compute the shrink-
age intensity. The shrinkage targets we consider are in general sim-
ilar to those considered in the existent literature.

We consider three shrinkage estimators of the moments of as-
set returns. First, we consider a shrinkage estimator of the vector
of means similar to those considered before by Jorion (1986) or
Frost and Savarino (1986). Unlike these authors, however, we de-
fine our estimator a priori as a convex combination of the sample
mean and a target element, and we calibrate the shrinkage inten-
sity to minimize the expected quadratic loss—a criterion that dis-
tinguishes our work from that of the aforementioned papers. We
provide a closed-form expression for the optimal shrinkage inten-
sity under the assumption that returns are independent and iden-
tically distributed (iid), but without imposing any further
assumptions on the return distribution. Second, we consider the
shrinkage covariance matrix proposed by Ledoit and Wolf
(2004b), and we implement the same calibration criterion, the ex-
pected quadratic loss. Unlike Ledoit and Wolf (2004b), however,
we provide a closed-form expression of the optimal shrinkage
intensity for finite samples by assuming that returns are iid nor-
mal. Third, we consider a shrinkage estimator of the inverse
covariance matrix that is a convex combination of the inverse
of the sample covariance matrix and the identity matrix. This
estimator is similar to those considered by Frahm and Memmel
(2010) and Kourtis et al. (2012), but our contribution is to con-
sider a different calibration criterion for the shrinkage intensity:
the expected quadratic loss. Moreover, under iid normal returns,
we provide a closed-form expression of the true optimal shrink-
age intensity that minimizes the expected quadratic loss. Finally,
we propose a new calibration criterion for the shrinkage covari-
ance matrix that takes into account not only the expected qua-
dratic loss but also its condition number. The condition number
gives a bound for the sensitivity of the computed portfolio
weights to estimation errors in the mean and covariance matrix
of asset returns, and thus calibrating the shrinkage covariance
matrix so that its condition number is relatively small helps to re-
duce the impact of estimation error in portfolio selection. Indeed,
our experiments with simulated and empirical data demonstrate
the advantages of using this criterion for the construction of min-
imum-variance portfolios.

We investigate three different shrinkage portfolios. The first is
obtained by shrinking the sample mean–variance portfolio to-
wards the sample minimum-variance portfolio and it is closely re-
lated to the three-fund portfolio of Kan and Zhou (2007); the
second is obtained by shrinking the sample mean–variance portfo-
lio towards the equally-weighted portfolio as in Tu and Zhou

(2011); and the third is obtained by shrinking the sample mini-
mum-variance portfolio towards the equally-weighted portfolio,
similar to DeMiguel et al. (2009). We contribute to the literature
by considering, in addition to the utility and variance criteria,
two novel calibration criteria: the expected quadratic loss minimi-
zation criterion, and the Sharpe ratio maximization criterion. We
study the expected quadratic loss criterion because of its good per-
formance in the context of shrinkage covariance matrices (see Le-
doit and Wolf, 2004a); and we consider the Sharpe ratio criterion
because it is a particular case of the expected utility criterion and
it is a relevant performance measure for investors.

For both types of shrinkage estimators, moments and portfolio
weights, we propose a multivariate nonparametric smoothed boot-
strap approach to estimate the optimal shrinkage intensity. This
approach does not impose any assumption on the distribution of
asset returns. To the best of our knowledge, this is the first work
to consider such a nonparametric approach for shrinkage estima-
tors within the context of portfolio optimization.

Finally, we evaluate the out-of-sample performance of the port-
folios obtained from shrinkage moments, as well as that of the
shrinkage portfolios on the six empirical datasets listed in
Table B.1. For portfolios computed from shrinkage moments, we
identify two main findings. First, the shrinkage estimator of the
vector of means calibrated with our proposed criterion improves
the out-of-sample performance of the resulting mean–variance
portfolios. Second, taking the condition number of the estimated
covariance matrix into account improves the quality of its shrink-
age estimators. For shrinkage portfolios we identify two main find-
ings. First, we find that for those shrinkage portfolios that make use
of the sample mean, the best calibration criterion is the portfolio
variance minimization criterion. Second, for shrinkage portfolios
that ignore the sample mean, the best calibration criterion is to
minimize the expected quadratic loss. Finally, for both shrinkage
moments and shrinkage portfolios, we find that the nonparametric
bootstrap approach to estimate the optimal shrinkage intensity
tends to work better than the parametric approach based on
normality.

Summarizing, we contribute to the literature of shrinkage esti-
mators for portfolio selection in the following aspects: first, we
propose new calibration criteria for shrinkage estimators of mo-
ments of asset returns. Second, we consider new calibration crite-
ria for shrinkage portfolios. Concretely, we consider a expected
quadratic loss minimization criterion, as well as a Sharpe ratio
maximization criterion. Third, we study a multivariate nonpara-
metric approach to compute the optimal shrinkage intensity when
returns are iid. Finally, we carry out a comprehensive empirical
investigation of shrinkage estimators for portfolio selection on
six empirical datasets.

The paper is organized as follows. Section 2 introduces all the
considered shrinkage estimators for portfolio selection. Section 3
characterizes the optimal shrinkage intensities when asset returns
are iid normal. Section 4 proposes a smoothed bootstrap approach

Table B.1
List of datasets. This table list the various datasets analyzed, the abbreviation used to identify each dataset, the number of assets N contained in each dataset, the time period
spanned by the dataset, and the source of the data. The dataset of CRSP returns (SP100) is constructed in a way similar to Jagannathan and Ma (2003), with monthly rebalancing:
in January of each year we randomly select 100 assets as our asset universe for the next 12 months.

# Dataset Abbreviation N Time period Source

1 5 Industry Portfolios representing the US stock market 5Ind 5 01/1972–06/2009 K. Frencha

2 10 Industry Portfolios representing the US stock market 10Ind 10 01/1972–06/2009 K. French
3 38 Industry Portfolios representing the US stock market 38IndP 38 01/1972–06/2009 K. French
4 48 Industry Portfolios representing the US stock market 48Ind 48 01/1972–06/2009 K. French
5 100 Fama and French Portfolios of firms sorted by size and book to market 100FF 100 01/1972–06/2009 K. French
6 100 randomized stocks from S&P 500 SP100 100 01/1988–12/2008 CRSPb

a http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
b CRSP, The Center for Research in Security Prices.
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