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a b s t r a c t

The potential of economic variables for financial risk measurement is an open field for research. This arti-
cle studies the role of market capitalization in the estimation of Value-at-Risk (VaR). We test the perfor-
mance of different VaR methodologies for portfolios with different market capitalization. We perform the
analysis considering separately financial crisis periods and non-crisis periods. We find that VaR methods
perform differently for portfolios with different market capitalization. For portfolios with stocks of differ-
ent sizes we obtain better VaR estimates when taking market capitalization into account. We also find
that it is important to consider crisis and non-crisis periods separately when estimating VaR across dif-
ferent sizes. This study provides evidence that market fundamentals are relevant for risk measurement.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The accords on banking supervision from the Bank for Interna-
tional Settlements (BIS) single out Value-at-Risk (VaR) as a mea-
sure of financial risk. The BIS accords and in particular VaR play a
central role in financial risk measurement and management. De-
spite its importance the most popular methods in practice for esti-
mating VaR (historical simulation and RiskMetrics) are yet
relatively simple. This is a constraint of real-world. The complexity
of financial institutions calls for sound simple models, easy to
estimate.

There is a vast academic literature on methods for estimating
VaR. These methods can be very sophisticated and they are mainly
reduced form in the sense that they explain risk in an autoregres-
sive manner. The very well known GARCH model (Bollerslev
(1986)) is perhaps the prime example of this. Recently there has
been an increased interest on structural approaches for risk mea-
surement involving market and macro-economic variables; see
Andersen et al. (2012) for a detailed overview. This article contrib-
utes to this stream of research. Our aim is to understand the rela-
tion between stock size, measured by market capitalization, and
equity risk measured by VaR.

By definition the 100a% VaR is the value such that the probabil-
ity of observing a loss larger than VaR is smaller than the

confidence level 1 � a, over a given time horizon. The time horizon
usually is a 1-day or 10-day holding period for market risk and
1 year for credit and operational risk. The confidence level a typi-
cally ranges between 95% and 99%. Hence VaR is in the tail of the
profit-and-loss or returns distribution. This fact makes the estima-
tion of VaR a difficult task. In probabilistic terms the definition of
VaR is very simple. VaR is the negative of the 1 � a probability
quantile of the returns distribution.

To compute VaR by the existing models it is necessary to obtain
an estimate of the distribution of the portfolio returns sometime in
the future. The only exception is the regression quantile method
introduced in Chernozhukov and Umantsev (2001) and Engle and
Manganelli (2004), where the quantile of the distribution is mod-
eled directly. All the other VaR models use different approaches
to estimating the distribution of the returns. We can classify these
VaR models as follows: Historical simulation, introduced by Bou-
doukh et al. (1998), uses the empirical distribution function ob-
tained from past data to estimate VaR as an empirical quantile;
Filtered historical simulation estimates VaR as an empirical quan-
tile of the residuals obtained from fitting a parametric model to the
original returns. Most commonly the method is implemented with
a GARCH type model to filter the returns as introduced by Barone-
Adesi et al. (1998, 1999); Fully parametric methods which model
the complete returns distribution. RiskMetrics (1996) and GARCH,
from Bollerslev (1986), are prime examples of fully parametric
models used for estimating VaR. Chavez-Demoulin et al. (2005)
introduce a parametric sophisticated alternative to the use of
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GARCH as a filter based on a point process approach; Extreme
Value Theory (EVT) methods model the tail of the returns distribu-
tion. The filtered EVT model, where the returns are filtered with a
GARCH model, was first introduced in McNeil and Frey (2000).

Since the seminal work of Banz (1981), Stattman (1980),
Rosenberg et al. (1985), and Fama and French (1992) that firm
and market specific variables are known to be useful in explaining
the expected return on stocks. Both the expected return and the
quantile are characteristics of the asset return distribution. It
seems pertinent to ask if there is a relationship between VaR, as
a quantile, and market variables. Here we concentrate on market
capitalization.

Reference papers comparing the performance of different VaR
models are Bao et al. (2003, 2006), Brooks et al. (2005), Kuester
et al. (2006) and Pritsker (1997). Many of the studies on the com-
putation of VaR compare and propose different methods using data
on large capitalization firms, major indices or highly traded curren-
cies. A complete list would be long but relevant examples are:
Kuester et al. (2006) who use daily returns on the NASDAQ Com-
posite Index; McNeil and Frey (2000) do backtesting on the
S&P500 and DAX indices, BMW stock prices, US dollar-British
pound exchange rate and gold prices; Mancini and Trojani (2011)
use the S&P500 index, US dollar-Japanese Yen exchange rate,
Microsoft and Boeing stock prices; Bao et al. (2003) use daily re-
turns on the S&P500 and NASDAQ indices; Engle and Manganelli
(2004) implemented their CAViaR methodology on returns of Gen-
eral Motors, IBM and S&P500. Hence, there might be a bias in the
results found in the literature concerning the performance of VaR
estimation methods.

To the best of our knowledge market variables have not been of-
ten studied in connection with VaR estimation. The empirical study
of VaR methods where we found market capitalization being used
is Halbleib and Pohlmeier (2012). The authors raise the question
whether market capitalization is important but the paper has a
much wider focus exploring the performance of different VaR mod-
els and distributional assumptions across different estimation time
windows. Although within a complex study, the authors find evi-
dence that market capitalization is important for VaR estimation.

The contribution of this paper is to explore the importance of
market capitalization in estimating VaR. We use returns on NYSE,
AMEX and NASDAQ stocks. We specifically consider separately
periods of financial crises and periods without crises, challenging
the performance of methods for forecasting VaR. There is a number
of methods for computing VaR. Since there is no ultimate consen-
sus on which is the best we use several methods in our study. We
calculate one period ahead (out-of-sample) sequences of VaR esti-
mates. Then we compare the sequences of VaR estimates with the
realized returns and test if the estimated VaR corresponds to the
level of risk desired. The result of these tests gives the performance
of the VaR methods. This is called backtesting a VaR model. We
backtest VaR models on ten portfolios with different market capi-
talization during crisis periods and non-crisis periods. We test if
the methods perform differently across different market capitaliza-
tion portfolios during calm and during unstable market periods. Fi-
nally we estimate VaR for a portfolio composed of stocks of
different sizes with and without taking market capitalization into
account. Then we compare the performance of the two approaches
to find if considering market capitalization significantly improves
VaR estimation.

This article is organized as follows. In Section 2 we outline the
methods for the estimation of VaR used in this study. Section 3
describes the backtesting methodology which quantifies the
performance of the VaR methods. The empirical implementation
of the VaR estimation methods and corresponding backtesting is
reported in Section 4. In Section 5 we test the significance of
market capitalization in explaining the performance of VaR

methods for different stock size portfolios. We study the effective-
ness of using market capitalization on estimating the VaR of a port-
folio composed of stocks with different sizes in Section 6. Finally
Section 7 synthesizes the results and presents final conclusions.

2. VaR estimation methods used in this study

The 100a% VaR is the negative of the quantile of probability
1 � a of the returns distribution. In most applications a varies be-
tween 95% and 99% but a can also take the value of 99.9% as for in-
stance it is required for operational risk in the Basel II Accord.
Formally, for a confidence level a 2 (0,1), the 100a% VaR for period
t + h, conditional on the information available up to time t, is given
by

VaRa
tþh ¼ �Q 1�aðRtþhjF tÞ ¼ � inffr 2 R : PðRtþh 6 rjF tÞP 1� ag;

ð1Þ

where Rt is the random variable representing the return in period t,
Qa(�) denotes the quantile of probability a and F t represents the
information available at time t. Estimating VaR is equivalent to esti-
mating a quantile of the unknown distribution of returns for period
t + h.

The methods used here for estimating VaR can be classified as
historical simulation (HS), fully parametric, and (semi-parametric)
Extreme Value Theory (EVT) models. Historical simulation uses
empirical quantiles obtained from (filtered or not) past data. Fully
parametric models characterize the complete return distribution
using a, possibly dynamic, parametric model. EVT models use a
parametric family to describe the tail of the distribution while
the center of the returns distribution is modeled by the empirical
distribution function.

We assume that the returns can be defined as a location scale
process conditional on the set of information available at time t:

rtþh ¼ EðRtþhjF tÞ þ �tþh ¼ ltþh þ rtþhztþh; ð2Þ

where lt+h is the expected return for the period t + h given the infor-
mation available at time t,rt+h is the conditional scale, �t+h is an er-
ror term and zt+h has a zero location, unit scale probability density
function fZ(�). The 100a% VaR forecast for the period t + h condi-
tional on the information available at time t is then

VaRa
tþh ¼ �ðltþh þ rtþhQ 1�aðZÞÞ; ð3Þ

where Qa is the a quantile of fZ(�).
Different VaR methods assume different specifications for the

conditional location lt+h, conditional scale rt+h, and probability
density fZ(�). An outline of the VaR methods used in this study
follows.

2.1. Historical simulation

The simplest method of estimating VaR (see for instance Christ-
offersen (2012)) is to use the empirical quantile of the return dis-
tribution. This method is usually called (see Kuester et al. (2006))
the naive historical simulation. The theoretical justification for this
estimator is that if we assume that the process of the returns is sta-
tionary then the empirical distribution is a consistent estimator of
the unobserved future distribution function.

In order to define the estimator consider a sample of past x re-
turns (rt,rt�1, . . . ,rt�w+1) and the ordered sample (r(1),r(2), . . . ,r(x)),
where r(1) 6 r(2) 6 � � � 6 r(x) are the so-called ordered statistics.
The historical simulation 100a% VaR for period t + 1 is given bydVaRa

tþ1 ¼ � bQ 1�aðrt ; rt�1; . . . ; rt�wþ1Þ ¼ �rð½ð1�aÞ�x�Þ; ð4Þ

where [�] represents the integer part of a real number. As an exam-
ple, if we consider a sample of return observations with size
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