Computers in Industry 67 (2015) 86-96

COMPUTERS IN -
INDUSTRY, -

Contents lists available at ScienceDirect

Computers in Industry

journal homepage: www.elsevier.com/locate/compind

prom

® CrossMark

Using extended Axiomatic Design theory to reduce complexities
in Global Software Development projects

Hadi Kandjani *°, Madjid Tavana “®*, Peter Bernus®, Lian Wen ¢, Amir Mohtarami

2 Department of Information Technology Management, Shahid Beheshti University, Tehran, Iran

b Centre for Enterprise Architecture Research and Management (CEARM), School of Information and Communication Technology, Griffith University, Brisbane,
Australia

€ Business Systems and Analytics Department, Lindback Distinguished Chair of Information Systems and Decision Sciences, La Salle University, Philadelphia,
PA 19141, United States

d Business Information Systems Department, Faculty of Business Administration and Economics, University of Paderborn, D-33098 Paderborn, Germany
€ Institute for Integrated and Intelligent Systems (IIIS), School of ICT, Griffith University, Brisbane, Australia

fDepartment of Information Technology Management, Faculty of Management and Economics, Tarbiat Modares University, Tehran, Iran

ARTICLE INFO ABSTRACT

Article history:

Received 28 December 2013

Received in revised form 28 August 2014
Accepted 21 October 2014

Available online 3 December 2014

Global Software Development (GSD) projects could be best understood as intrinsically complex adaptive
living systems: they cannot purely be considered as ‘designed systems’, as deliberate design/control
episodes and processes (using ‘software engineering’ models) are intermixed with emergent change
episodes and processes (that may perhaps be explained by models). Therefore to understand GSD
projects as complex systems we need to combine the state-of-the-art of GSD research, as addressed in
the software engineering discipline, with results of other disciplines that study complexity (e.g.

Iéi))/ E;c;rgf):ftware Development Enterprise Architecture, Complexity and Information Theory, Axiomatic Design theory). In this paper we
Complexity P study the complexity of GSD projects and propose an upper bound estimation of Kolmogorov complexity

(KC) to estimate the information content (as a complexity measure) of project plans. We demonstrate
using two hypothetical examples how good and bad project plans compare with respect to complexity,
and propose the application of extended Axiomatic Design (AD) theory to reduce the complexity of GSD
projects in the project planning stage, as well as to keep this complexity as low as possible during the
project execution stage.

Extended Axiomatic Design theory
Kolmogorov complexity

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A Global Software Development (GSD) project has to go through
complex processes to finish projects within an allocated budget,
time schedule, and with customer satisfaction and completely
fulfilled functional and non-functional requirements. The concept
of GSD implies distributed teams from different organisations and
geographical locations who collaborate to design, manage and
execute life cycle activities of a joint software development project
functioning as a supply chain [32]. This structure in itself increases

* Corresponding author at: Business Systems and Analytics Department,
Lindback Distinguished Chair of Information Systems and Decision Sciences, La
Salle University, Philadelphia, PA 19141, United States. Tel.: +1 215 951 1129;
fax: +1 267 295 2854.

E-mail addresses: h.kandjani@griffith.edu.au (H. Kandjani), tavana@lasalle.edu
(M. Tavana), p.bernus@griffith.edu.au (P. Bernus), l.wen@griffith.edu.au (L. Wen),
A.Mohtarami@modares.ac.ir (A. Mohtarami).

URL: http://tavana.us/ (M. Tavana),

http://dx.doi.org/10.1016/j.compind.2014.10.008
0166-3615/© 2014 Elsevier B.V. All rights reserved.

the complexity of distributed GSD projects [13,35,38], where part
of this complexity is due to dynamic dependencies among
components of the software development products [7] as well
as dependencies among life cycle activities of project planning and
software development groups [1]. This complexity creates
uncertainty and ambiguity due to the high number of elements
and also the high amount of dependencies among GSD products,
projects or project activities [29].

Given the highly distributed nature of GSD projects a
completely centralised control is very hard to achieve, and
subsequently these projects could be looked at as intrinsically
complex adaptive systems: they cannot purely be considered as
‘designed systems’, as deliberate design/control episodes and
processes (‘software engineering’, using models) are intermixed
with emergent change episodes and processes (that may perhaps
be explained by models).

There exist various kinds of engineered systems, including
software products, which are developed by a global engineering
effort. Common to all is a highly complex (or complicated) project


http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2014.10.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2014.10.008&domain=pdf
http://dx.doi.org/10.1016/j.compind.2014.10.008
mailto:h.kandjani@griffith.edu.au
mailto:tavana@lasalle.edu
mailto:p.bernus@griffith.edu.au
mailto:l.wen@griffith.edu.au
mailto:A.Mohtarami@modares.ac.ir
http://tavana.us/
http://www.sciencedirect.com/science/journal/01663615
www.elsevier.com/locate/compind
http://dx.doi.org/10.1016/j.compind.2014.10.008

H. Kandjani et al./Computers in Industry 67 (2015) 86-96 87

design, as many of these projects have been usually designed
“without having a theoretical framework for complexity” [43]. GSD
therefore is becoming more complicated unless fundamental
theories and principles, and corresponding methods for reducing
complexity are developed (or adopted from the complexity field).
An ultimate goal of the complexity field is to replace the
“empirical approach” in designing, operating and managing
complex systems with a more “scientific approach” [43]. Com-
plexity is therefore an important problem facing GSD projects,
because uncontrolled complexity can cause undesired design
qualities and therefore unsatisfied requirements of GSD projects.
The first question that may arise, before going any further, is:
“What is Complexity?”

Gershenson [15] defines the complexity of a system (Csys) as a
function of the number of its elements (#E), the number of
interactions between them (#I), the complexities of the elements
(C¢;), and the complexities of the interactions (Cy) among elements.
Axiomatic Design (AD) theory [42] defines a ‘complex’ system as
one that cannot be predicted to always satisfy its functional
requirements. Suh [42] and other authors, such as Melvin [30],
define the concept of system complexity through considering ‘the
probability of satisfying all functional requirements all the time’.
Functional requirements are defined in AD as “a minimum set of
independent requirements that completely characterise the
functional needs of a product (software, organisation, systems,
etc.) in the function domain” [39,42].

For software engineers the notion of a software not always
satisfying its functional requirements may seem odd, a normal
reaction to such state of affairs would be that this is due to the lack
of a complete verification. However, in large scale systems
verification cannot be complete, especially because one must take
into account that the ability to produce the correct output by
transforming an input that satisfies the preconditions, depends on
other ‘assumed inputs’, for example that at the time the
transformation must take place, the necessary processing power
and storage are available. Even if every component of a system was
designed to perform perfectly in isolation, they would not
necessarily always perform accordingly as part of a system in
every possible operational scenario (with a potentially intractable
number of possible operational states), implying the need for a
design theory that explains, and for methods that can be used to
reduce, the complexity of a system.

Axiomatic Design is a theory that aims to distil into two ‘design
axioms’ the essence of what is a good design, especially from the
point of view of eliminating unnecessary complexity. Many
readers may already be familiar with AD, but for those who are
not, Section 3 gives a brief introduction to the details of the design
axioms that are the core of this theory.

Many applications of AD in product design, system design,
organisational decision making, and software development have
appeared in the literature. AD was first applied in software
engineering by Kim et al. [23] and was first applied in system
design concepts by Suh [40]. Do and Park [14] also introduced new
concepts by applying AD specifically to software design. Designing
software based on AD creates “uncoupled or decoupled inter-
relationships and arrangements among ‘modules’, and is easy to
change, modify, and extend” [45].

Harutunian et al. [16] used the first (‘independence’) axiom of
AD to evaluate design decisions that provide an optimal software
development project sequence. Suh and Do [45] combined the
independence axiom of the AD theory and object-oriented
programming to design large-scale software development sys-
tems. They were able to shorten the lead-time of software, improve
reliability, reduce costs, and increase productivity.

Chen et al. [11] used the independence axiom to build a
hierarchical knowledge base system. They constructed a simulation

model and combined it with a decision support system to illustrate
the effectiveness of the proposed knowledge base system. Huang
[17] extended the AD principles and defined two master domains:
design workspace and review workspace. They investigated the
relations between the two domains based on the independence
axiom. Huang and Jiang [18] used fuzzy set theory and expressed
past experiences and insights as the membership functions of design
parameters and evaluation criteria.

Lindkvist and Soderberk [27] used the independence axiom of AD
and robust design to compare and evaluate assembly concept
solutions. Chen et al. [10] used the independence axiom to facilitate
both the integration of existing software and the modification of
software since changes in one module did not affect other modules.
Chen and Feng [9] used the independence axiom to test a computer-
aided design model whether the proposed model satisfied the
independence axiom or not. Yi and Park [47] developed software to
analyse and construct the design process according to the
independence axiom of the AD theory.

Togay et al. [46] proposed a component-oriented approach
based on the AD theory. In the study, the V-Model proposed by Suh
and Do [45] was extended since the AD process model did not
address component-level architecture issues. Kulaka [25] provides
a comprehensive overview of the literature on AD theory and
principles.

Suh [43] divides “the treatment of complexity” into two distinct
domains: treating the complexity in the “physical domain” and
treating it in the “functional domain.” In the first domain most
engineers, physicists and mathematicians consider complexity as
an “inherent characteristic of physical things, including algo-
rithms, products, processes, and manufacturing systems”. The
“functional” approach is to treat complexity as a relative concept
that evaluates how well we can satisfy “what we want to achieve”
with “what is achievable” [43]. By considering a GSD project as an
artefact it may be possible to apply AD theory to the project, and
increase the probability of satisfying all project requirements (i.e.
the project always performs what it needs to do).

The remainder of this paper is organised as follows. In Section 2
we introduce a reference model for GSD projects and Extended AD
theory and use this theory to address the complexity of GSD
planning and development projects in Section 3. After these
reviews, in Section 4 we use an upper bound estimation of the
complexity of the design matrix (by applying a complexity
measure well known from information theory, Kolmogorov
complexity (KC), and use this as a proxy measure of AD theory’s
Information Content metric). Using this proxy it is possible to
measure the complexity of the design of an object, whereupon in
this article the objects of interest are the software project
planning project and the software product development project
itself (i.e. we are not talking about the complexity of the software
product). In Section 5 we present two hypothetical examples to
compare both good and bad GSD planning projects and develop-
ment projects from the complexity point of view. In Section 6 we
discuss the separation of management functions from operations,
and in Section 7 we present conclusions and future research
directions.

2. A reference model for global software development

Prikladnicki et al. [34] proposed a reference model for GSD
based on the results of real GSD case studies. Their proposed
reference model includes the organisational and the project
dimensions:

Organisational dimension (Planning): Prikladnicki et al. [34]
state that planning is important to properly organise and manage
distributed projects. They identified the initial planning as a formal
and basic stage to decide if a project can be distributed, how to plan



Download English Version:

https://daneshyari.com/en/article/508939

Download Persian Version:

https://daneshyari.com/article/508939

Daneshyari.com


https://daneshyari.com/en/article/508939
https://daneshyari.com/article/508939
https://daneshyari.com

