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a b s t r a c t

We consider the dynamic portfolio choice problem in a jump-diffusion model, where an investor may
face constraints on her portfolio weights: for instance, no-short-selling constraints. It is a daunting task
to use standard numerical methods to solve a constrained portfolio choice problem, especially when
there is a large number of state variables. By suitably embedding the constrained problem in an appro-
priate family of unconstrained ones, we provide some equivalent optimality conditions for the indirect
value function and optimal portfolio weights. These results simplify and help to solve the constrained
optimal portfolio choice problem in jump-diffusion models. Finally, we apply our theoretical results to
several examples, to examine the impact of no-short-selling and/or no-borrowing constraints on the per-
formance of optimal portfolio strategies.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we solve the optimal dynamic portfolio choice
problem in a jump-diffusion model with some realistic constraints
on portfolio weights, such as the no-short-selling constraint and
the no-borrowing constraint. The dynamic portfolio choice prob-
lem without portfolio constraints in pure-diffusion models is
prompted by the seminal work of Merton (1969, 1971) and Sam-
uelson (1969), and is further developed by Karatzas et al. (1987),
Kim and Omberg (1996), Wachter (2002), Detemple et al. (2003),
and Liu (2007), among others. Wachter (2010) and Brandt (2010)
are good references for portfolio choice problems. The constrained
dynamic portfolio choice problem in pure-diffusion models is first
studied by Karatzas et al. (1991), He and Pearson (1991), and Xu
and Shreve (1992). In general, a market with portfolio constraints
is incomplete. It is usually a daunting task to solve such a portfolio
choice problem in an incomplete market, either through the HJB
equation (due to limits on dimensionality) or the martingale-dual-
ity method (as there are infinitely many martingale measures). To
overcome the market incompleteness caused by portfolio con-
straints, Cvitanic and Karatzas (1992) propose a general approach
to solve dynamic portfolio choice in the presence of various con-

straints on portfolio weights, including no-short-selling con-
straints and no-borrowing constraints.

More precisely, by appropriately adjusting the risk-free rate and
the drift terms of risky asset prices, Cvitanic and Karatzas (1992)
convert the constrained portfolio choice problem in the original
incomplete market into an unconstrained one in a set of fictitious
complete markets. Hence, solving the optimal portfolio problem in
the original incomplete market can be reduced to that in a set of
fictitious complete markets. As a result, we can apply the standard
martingale method to solve the optimal portfolio problem in each
fictitious complete market. Furthermore, it has been shown that
the optimal consumption and portfolio rule in the original market
is identical to those which are optimal in the worst of all the ficti-
tious markets. However, it is generally hard to find the worst ficti-
tious market and the corresponding optimal consumption and
portfolio strategy in the presence of a large number of state vari-
ables. For this reason, Bick et al. (2013) have recently developed
some efficient simulation-based approximation algorithms to solve
constrained consumption-investment problems in pure-diffusion
markets via the martingale-duality approach.

In those models mentioned above, it is standard to assume that
asset prices follow pure-diffusion processes, primarily due to their
analytical tractability. However, much recent research in finance
has documented empirical evidence of jumps in stock returns.
See, for example, Bakshi et al. (1997), Bates (2000), and Eraker
et al. (2003). With jumps, an asset return model can explicitly al-
low for sudden but infrequent market movements of large magni-
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tude, and thus capture the ‘‘skewed’’ and ‘‘fat-tailed’’ features of
stock return distributions. Many empirical and theoretical studies
find that the jump risk has a substantial impact on portfolio choice,
risk management and option pricing. See Merton (1976), Liu et al.
(2003), and Duffie et al. (2000), for example. More specifically, re-
cent portfolio choice papers in jump-diffusion models demonstrate
that optimal portfolios held by an investor facing jump risks differ
markedly from those in the absence of jumps, and that the eco-
nomic loss of ignoring jumps may be substantial. For a more de-
tailed analysis, see Liu et al. (2003) and Das and Uppal (2004).

Given the substantial impact of jumps on an investor’s
asset allocation decision, this paper solves the optimal portfolio
choice problem in realistic settings which involve jumps in stock
returns, portfolio constraints and potentially a large number of
state variables. As demonstrated by Bardhan and Chao (1996), once
unpredictable jumps are incorporated, a model with or without
portfolio constraints is inherently incomplete, regardless of the
number of traded stocks. This is in striking contrast to pure-diffu-
sion models which can be completed by incorporating more stocks.
Hence, unlike a pure-diffusion model with portfolio constraints,
the incompleteness caused by jumps in a jump-diffusion model
can not be removed through the ‘‘fictitious completion’’ techniques
in Karatzas et al. (1991) and Cvitanic and Karatzas (1992) and thus,
the martingale duality approaches they used cannot be directly ap-
plied to a jump-diffusion model. In this paper, we solve the optimal
portfolio choice problem in a multi-asset jump-diffusion model
with portfolio constraints. To be more specific, we first establish
equivalent optimality conditions similar to those in Cvitanic and
Karatzas (1992), which convert the constrained portfolio choice
problem in the original jump-diffusion model into an uncon-
strained one in a set of fictitious jump-diffusion models. Then,
we apply a portfolio weight decomposition approach recently
developed by Jin and Zhang (2012) to solve the portfolio choice
problem in jump-diffusion models.

Our paper is related to several papers in the literature on port-
folio choice problems in a jump-diffusion setting. The model in the
present paper, however, differs from those used by Liu et al. (2003)
who consider single-stock jump-diffusion models with no portfolio
constraints, while we consider multi-asset jump-diffusion models
with some realistic portfolio constraints. In Das and Uppal (2004)
and Ait-Sahalia et al. (2009), meanwhile, they solve the portfolio
selection problems in jump-diffusion models which can include a
large number of assets. However, in their models, there is only
one type of jumps. All of the coefficients in stock return processes
are constants and there are no portfolio constraints. In contrast, we
consider the optimal portfolio strategies in a multi-asset jump-dif-
fusion model, which includes a large number of assets, state vari-
ables and portfolio constraints.

Our paper is also related to Jin and Zhang (2012) on portfolio
choice problems in a jump-diffusion setting, in which the authors
develop decomposition methods for portfolio weights to obtain
tractable solutions to optimal portfolio strategies in a jump-diffu-
sion model incorporating a large number of assets and state vari-
ables. However, only one portfolio constraint is considered. The
constraint is that the number of traded risky assets is smaller than
the total number of diffusions and jumps, which is the case of an
incomplete pure-diffusion market considered in Karatzas et al.
(1991). In the present paper, we incorporate more general con-
straints in a jump-diffusion model.

In short, our work contributes to the dynamic portfolio choice
literature by extending the pure-diffusion model in Cvitanic and
Karatzas (1992) to a jump-diffusion model and incorporating more
general portfolio constraints in Jin and Zhang (2012). To the best of
our knowledge, our paper is the first one to consider general and
realistic constrained portfolio choice problems in jump-diffusion
models with a large number of assets and state variables.

The rest of the paper is organized as follows. In the next section,
we lay out the framework of the constrained dynamic portfolio
choice problem in a jump-diffusion model, construct an uncon-
strained dynamic portfolio choice problem in a set of fictitious
markets, and then present our results of equivalent optimality con-
ditions. Section 3 applies the theoretical results developed in Sec-
tion 2 to no-short-selling and no-borrowing constraints
respectively, and compares the method in the present paper with
the standard HJB equation method. Section 4 applies the theoreti-
cal results to several numerical examples. Section 5 concludes the
paper. All proofs are given in the appendices.

2. The portfolio choice problem

This section describes the investment problem for an investor in
allocating her wealth between a set of risky assets and one risk-less
asset in a jump-diffusion model, who faces investment constraints.
The investor seeks to maximize the expected utility from interme-
diate consumption and terminal wealth.

2.1. The constrained portfolio choice problem

We fix a complete probability space ðX;F ; PÞ and a filtration
fF tg satisfying the usual conditions. In the economy assumed,
we use a l-dimensional state variable Xt = (X1,t, . . . , Xl,t)> to capture
the stochastic variation in investment opportunities. Stochastic
volatility and interest rates are typical examples of state variables.
Here we use > to denote the transpose of a matrix or a vector. For
analytical tractability, as illustrated in Jin and Zhang (2012), we as-
sume that state variables Xt follow a pure diffusion process

dXt ¼ bxðXtÞdt þ rxðXtÞdBX
t

where BX
t ¼ BX

1;t ; . . . ;BX
l;t

� �>
is an l -dimensional standard Brownian

motion, bx(Xt) is an l-dimensional vector function and rx(Xt) is an
l � l matrix function of Xt.

An investor with a planning horizon [0,T] seeks to allocate her
wealth between one risk-less asset and n risky securities with port-
folio constraints described below. The risk-less asset, called the
bond, has a price S0,t which evolves according to the differential
equation

dS0;t ¼ S0;trðXtÞdt ð1Þ
S0;0 ¼ 1

The prices of risky assets follow the dynamics

dSi;t ¼ Si;t� biðXtÞdt þ rb
i ðXtÞdBS

t þ rq
i ðXtÞðY � dNtÞ

h i
for i

¼ 1; . . . ;n ð2Þ
where BS

t ¼ BS
1;t ; . . . ;BS

d;t

� �>
is a d-dimensional standard Brownian

motion correlated with BX
t with a d � l correlation matrix qt, and

Nt = (N1,t, . . . ,Nn�d,t)> is a (n � d)-dimensional multivariate Poisson
process, with Nk,t denoting the number of type k jumps up to time t.
rb

i ðXtÞ is the d-dimensional diffusion coefficient vector and rq
i ðXtÞ is

the (n � d)-dimensional jump coefficient vector. Y = (Y1, . . . , Yn�d)>

is a (n � d)-dimensional vector and Y � dNt denotes the compo-
nent-wise multiplication of Y and dNt. More precisely, Y � dNt = (Y1-

� dNt = (Y1dN1,t, . . . , Yn�ddNn�d,t)>, where Yk denotes the size of the
type k jump. In particular, the Brownian motions represent frequent
small movements in stock prices, while the jump processes repre-
sent infrequent large shocks to the market.

For illustrative purposes, we assume that Nk has finite activity
with stochastic intensity kk, and the size Yk of the type k jump
has probability density Uk(t,dx).1 For tractability, we assume kk = -

1 Our results can be extended to a model with infinite activity by replacing
kk(t)Uk(t,dx) with a Levy measure.
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