
On the role of the estimation error in prediction of expected shortfall

Carl Lönnbark ⇑
Department of Economics, Umeå School of Business and Economics, Umeå University, Sweden

a r t i c l e i n f o

Article history:
Received 20 January 2012
Accepted 25 October 2012
Available online 8 November 2012

JEL classification:
G19
C52
C53
C58
G10

Keywords:
Backtesting
Delta method
Finance
GARCH
Risk management

a b s t r a c t

In the estimation of risk measures such as Value at Risk and Expected shortfall relatively short estimation
windows are typically used rendering the estimation error a possibly non-negligible component. In this
paper we build upon previous results for the Value at Risk and discuss how the estimation error comes
into play for the Expected Shortfall. We identify two important aspects where it may be of importance.
On the one hand there is in the evaluation of predictors of the measure. On the other there is in the inter-
pretation and communication of it. We illustrate magnitudes numerically and emphasize the practical
importance of the latter aspect in an empirical application with stock market index data.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The recent financial crisis highlights the need of properly
understanding and measuring financial risks and in particular of
evaluating the means of doing so. When it comes to measuring
financial risk the Value-at-Risk (VaR) has during the past two dec-
ades or so emerged as the standard approach and it is today exten-
sively employed by financial institutions over the world. This
popularity is at least partially due to the fact that regulators have
adopted the measure as a base for capital adequacy calculations.
This was first stipulated in the 1996 Amendment to the first Basel
Accord on banking supervision and later further detailed and
reinforced in the second Accord (see Basel Committee on Banking
Supervision, 2005; Basel Committee on Banking Supervision,
2006). In the aftermath of the financial crises new regulations have
been developed to further strengthen capital requirement calcula-
tions (see Basel Committee on Banking Supervision, 2012b). Conse-
quently, the measure has been given due attention in the literature
(see Jorion (2007), for an extensive overview).

The VaR gives a potential portfolio loss that will only be ex-
ceeded with some (small) probability over a given horizon. As such
it is conceptually simple. However, critique has been directed at

the VaR measure both from the academia and from the industry.
A complaint from the latter is that the VaR is silent about the size
of the loss when it exceeds the VaR. Furthermore, the VaR may fail
to acknowledge so-called tail risk. That is, two portfolios may have
the same risk in terms of VaR, but their outcome in case of VaR
exceedence may be substantially different (e.g. Yamai and Yoshiba,
2005). In an important paper Artzner et al. (1999) give a formal dis-
cussion of what constitutes a good risk measure and establish
some properties of coherence that should be satisfied. In particular,
a risk measure should acknowledge the principle of diversification.
However, it is possible to find perverse cases, where the VaR does
not satisfy this property. A measure that fares better in these
respects is the Expected Shortfall (ES) that gives the expected loss
given that the loss exceeds the VaR. As the name implies it says
something about the size of the loss when disaster strikes, and it
also acknowledges tail risk in a better way than VaR. The measure
also possesses the desirable property of coherence. In fact, in a re-
cent report the Basel Committee on Banking Supervision suggests a
move towards the ES as the risk measure of choice for capital ade-
quacy calculations (see Basel Committee on Banking Supervision,
2012a).

In computing the VaR and the ES a model for the joint movements
of the risk factors of the portfolio is typically postulated and the
parameters of that model are estimated based on a data-set contain-
ing past observations. Thus, uncertainty in the predictors of VaR and

0378-4266/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jbankfin.2012.10.013

⇑ Tel.: +46 735 042030.
E-mail address: carl.lonnbark@econ.umu.se

Journal of Banking & Finance 37 (2013) 847–853

Contents lists available at SciVerse ScienceDirect

Journal of Banking & Finance

journal homepage: www.elsevier .com/locate / jbf

http://dx.doi.org/10.1016/j.jbankfin.2012.10.013
mailto:carl.lonnbark@econ.umu.se
http://dx.doi.org/10.1016/j.jbankfin.2012.10.013
http://www.sciencedirect.com/science/journal/03784266
http://www.elsevier.com/locate/jbf


ES arises from two primary sources. First of all, the true data gener-
ating process is not known, which gives rise to model risk. Secondly,
the fact that the parameters of the hypothesized model must be
estimated gives rise to estimation risk. Here, the focus is on the
estimation risk. This source of error is often referred to as a second
order issue and neglected though. Consequently, it is relatively
understudied. In fact, Lan et al. (2007) report that the research on
the uncertainty of VaR only amounts to about 2.5% of the VaR litera-
ture. In practise though, relatively short estimation windows of one
or two years are typically used rendering the estimation error a non-
negligible component. Indeed, the importance of estimation risk in
this context has previously been emphasized by Jorion (1996) and
Christoffersen and Gonçalves (2005) and others. In fact, Lönnbark
(2010) demonstrates that the estimation error in VaR predictors
may cause underestimation of portfolio risk in the sense that the
probability of exceeding the estimated VaR is higher than the chosen
level. Thus, the estimation error affects the interpretation of the VaR.
In addition, when it comes to assessing the adequacy of a VaR model
the conventional way is to compare a time series of historical VaR
predictions to the corresponding portfolio returns. This procedure
is commonly referred to as backtesting (e.g. Christoffersen, 2003,
Ch. 8). A good VaR model should have a proportion of VaR exceedenc-
es (days when the loss exceeds the VaR) close to the chosen probabil-
ity level. Consequently, as discussed in Escanciano and Olmo (2010)
the estimation error also affects the backtesting procedure and may
bias the breach frequency. Of obvious interest is what the picture
looks like for the ES measure, which is the focus of this paper.

2. ES and VaR predictors

We assume that portfolio returns are generated in discrete time
by

yt ¼ lðh10; It�1Þ þ rðh20; It�1Þet; ð1Þ

where we take et to be a standard normally distributed random var-
iable. The l(�) and the r(�) are the conditional mean and standard
deviation functions, respectively. The vectors h10 and h20 contain
true parameters and the set It contains the information available
at time t. Typically, r(�) is postulated indirectly in terms of the con-
ditional variance (cf. the workhorse GARCH (1,1) specification of
Bollerslev (1986) that parameterizes the conditional variance by
r2

t ¼ b0 þ b1y2
t�1 þ b2r2

t�1). For a portfolio with returns generated
by (1) the one period ahead conditional VaR, VaRa

t , satisfies
Prt�1ðyt 6 �VaRa

t Þ ¼ a, where the subscript t � 1 indicates that the
probability is conditional on It�1, and is in this case given explicitely
by

VaRa
t ¼ �lðh10; It�1Þ � rðh20; It�1ÞU�1

a ; ð2Þ

where U�1
a is the inverse of the cdf of the standard normal distribu-

tion evaluated at a. The associated ES is given by

ESa
t ¼ �Et�1ðytjyt 6 �VaRa

t Þ

¼ �lðh10; It�1Þ � rðh20; It�1Þ/ðU�1
a Þ=a ð3Þ

where /(�) is the pdf of the standard normal distribution and where
the subscript t � 1 on the expectation operator indicates that it is
conditional on It�1. The VaR and the ES are conventionally reported
as positive numbers. Hence, the minus signs in the definitions
above.

When it comes to the estimation of the parameter vector,
h0 ¼ ðh010; h020Þ

0, the maximum likelihood estimator is commonly
employed. It takes as the estimator the parameter vector,
h ¼ ðh01; h02Þ

0, that maximizes the (conditional) likelihood function,
L / �ð1=2Þ

P
ðln r2

t þ ðyt � ltÞ
2
=r2

t Þ, where lt = l (h1, It�1) and
rt = r (h2, It�1). Given some regularity conditions the estimator
vector, ĥ, is asymptotically normally distributed with the true

parameter vector, h0, as its mean and covariance matrix R = �[E(@2-

lnL(h0)/@h@ h
0
)]�1. Predictors of VaRa

t and ESa
t are simply obtained by

plugging in the estimator vector, ĥ, in the expressions (2) and (3),
respectively, to obtain

dVaRa
t ¼ �lðĥ1; It�1Þ � rðĥ2; It�1ÞU�1

a ; ð4Þ

and

dESa
t ¼ �lðĥ1; It�1Þ � rðĥ2; It�1Þ/ðU�1

a Þ=a: ð5Þ

3. The role of the estimation error

When it comes to quantifying the uncertainty due to the esti-
mation error in the VaR and the ES predictors we may rely on the
asymptotic normality of the parameter estimator (cf. Hansen,

2006, and others) . Heuristically, asymptotic normality of dVaRa
t

and dESa
t follows from the asymptotic normality of ĥ. We have

dVaRa
t � NðVaRa

t ; d
2
t Þ; ð6Þ

and

dESa
t � NðESa

t ; t
2
t Þ; ð7Þ

where the variances, d2
t and t2

t , may be obtained by employing the

delta method. In the sequel we maintain the assumption that dVaRa
t

and dESa
t are normally distributed. A key insight is that, in practice,

we use a random predictor of the true VaR and when it comes to
interpreting and communicating the measure the relevant probabil-

ity is Prt�1fyt 6 �dVaRa
t g. Clearly, this probability does not necessar-

ily equal aand may in fact equal some a⁄ > a implying an
underestimation of portfolio risk. Indeed, statements such as ‘‘the
probability that the portfolio loss is less than the VaR is 100a% ’’
may be quite misleading. In Fig. 1 we depict a situation with an
unbiased VaR predictor.

For a VaR ‘‘draw’’ to the left of (minus) the true VaR the
probability of exceedence is smaller than a. For a draw to the right
the opposite is true. As the return density is positively sloped
through the VaR density the latter will dominate. We note that if
the return density were flat through the VaR density there would
be no effect on the exceedence probability, i.e. a⁄ = a. Extrapolating
on this reasoning we may conjecture that the difference between
a⁄ and a is smaller for fat tailed return distributions.

Essentially, in the backtesting of a VaR predictor we compare
draws from the VaR distribution to draws from the return distribu-
tion. Thus, the discussion above have a bearing on this procedure
and for VaR the role of estimation error is essentially the same

Fig. 1. VaR and return densities. VaR density and return density refers to the
conditional densities of the VaR predictor and the return, respectively.
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