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a b s t r a c t

We generalize an empirical likelihood approach to deal with missing data to a model of consumer credit
scoring. An application to recent consumer credit data shows that our procedure yields parameter esti-
mates which are significantly different (both statistically and economically) from the case where custom-
ers who were refused credit are ignored. This has obvious implications for commercial banks as it shows
that refused customers should not be ignored when developing scorecards for the retail business. We also
show that forecasts of defaults derived from the method proposed in this paper improve upon the stan-
dard ones when refused customers do not enter the estimation data set.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Statistical models for predicting defaults in the consumer credit
industry and elsewhere suffer from the non-availability of default
information for customers who were denied credit in the first place
(Hand and Henley, 1993; Crook and Banasik, 2004, among many
others). This is known as the reject-inference-problem; it affects
the estimation of the model parameters in the same way as the
non-availability of high-probability rainy days would affect the
parameter estimates of a meteorological model for predicting rain.

This non-availability does not matter if observations are miss-
ing at random (MAR) in the sense of Rubin (1976). Missing at ran-
dom means that the probability of default, given all the exogenous
variables of the model, is the same whether an applicant is granted
a credit or not (or in the meteorological example: if the probability
of rain, given a set of relevant regressors, is the same for days ob-
served and unobserved). In applications, this can reasonably be as-
sumed if creditors base their decision on the same statistical model
(or a preliminary version thereof) which is to be estimated.

However, such procedures are illegal in many countries. In
Germany, for instance, the federal data privacy act explicitly

forbids banks to grant consumer credit solely on the basis of a statis-
tical model – there must be some human judgement involved as well
(for instance to determine whether applicants conceal relevant
information, see Fees et al. (2011)). This means that loan officers
have both the right and the duty to override a statistical model if they
think this is warranted by extra information. Among applicants with
otherwise identical sets of explanatory variables, some may there-
fore be granted a credit and some may not. Or technically speaking,
the probability of being granted a credit, given the observed regres-
sors, is not the same as the probability of being granted a credit, given
the observed regressors and future default information. Whenever
human judgement adds any additional information on future de-
faults, these probabilities will differ. This implies that data are miss-
ing not at random (MNAR) in the Rubin (1976) sense.

The present paper adds to previous approaches to take credit
decision processes into account when estimating models of default
(see e.g. Boyes et al. (1989) or Marshall et al. (2010)) by proposing
a new approach to cope with this. It is based on Qin et al. (2002),
who show how to reweight observations in the light of missing
data, given a parametric model for the missings, using empirical
likelihood (Owen, 2001). It compares favorably to other techniques
that have been suggested in the literature to mitigate the effects of
missing data in the credit scoring business in that we are able to
analytically derive the limiting distribution of the resulting estima-
tor. Most prominent among established methods are extrapolation,
reweighting, or simultaneous bivariate probit modeling of accep-
tance and default along the lines of Boyes et al. (1989). Extrapola-
tion means assigning a default status also to the rejects, based on
the same model that is fitted to the accepted cases only, and then
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reestimating the model. Reweighting is based on the preliminary
estimation of a model for acceptance, using both accepts and re-
jects, and a subsequent redistribution of all cases into classes with
varying percentages of defaults. All accepts are then reweighted
according to the proportion of defaults in their respective class.
See Crook and Banasik (2004) for a survey and a discussion of
the pros and cons of the various approaches.

We do not want to add to this comparison literature here, as this
would greatly expand the scope of our paper. Rather, we would like
to introduce a new competitor and derive and illustrate its proper-
ties. In particular, in the context of a logistic regression model for
defaults, we suggest an alternative reweighting scheme and show
analytically that it delivers consistent and asymptotically normal
parameter estimates even when credit decisions and defaults are
still correlated, given all regressors. We also investigate the rela-
tionship between the severity of the missing data problem and
the improvement provided by our new estimator and show that
there is a monotonous relationship between the two.

When applied to a recent data set of almost 10,000 individuals
requesting credit with a major German bank, our approach yields
parameter estimates which are significantly different from stan-
dard ones both in a statistical and in an economic sense. This
shows that ignoring the missing data problem has the potential
to mislead credit granting decisions in practice and is therefore
also relevant for practitioners: Whenever the credit granting pro-
cess is a mixture of formal scoring and informal judgment by credit
officers, the parameter estimates of the scoring model may be
biased and the default predictions derived from them may be inac-
curate, with obvious implications for the profit of banks and finan-
cial institutions. We also show by Monte Carlo experiments that
default forecasts derived from our new estimator indeed improve
upon default forecasts obtained from standard Maximum Likeli-
hood estimators of the model parameters.

2. An alternative way of reweighting observations in the
presence of rejects

We consider N applicants for a credit, n of whom are granted a credit
and N–n are not. Default is coded by a dichotomous variable Y, where
Yi = 0 in case of default and Yi = 1 in case of no default. We assume that
Yi depends on a set of k regressors which we collect together in a (k� 1)
vector X. Potential errors of measurement concerning X are neglected;
see however Fees et al. (2011). We also assume that the dependence of
Y on X can be described by a logistic regression model

PðYi ¼ 1jXi ¼ xi; bÞ :

¼ expðb0 þ b1x1;i þ b2x2;i þ . . .þ bkxk;iÞ
1þ expðb0 þ b1x1;i þ b2x2;i þ . . .þ bkxk;iÞ

ð1Þ

(i = 1, . . . , N). This is still by far the most popular statistical model
entertained in this context, see e.g. Thomas (2000), Jacobson and
Roszbach (2003) or Crook and Banasik (2004). (For a rather different
approach, see Khandani et al. (2010)). The primary difference to a
conventional logistic regression is that not all N outcomes are ob-
served. Let Ri = 1 if credit is granted and Ri = 0 if credit is denied.
Without loss of generality, we assume that Ri = 1 for the first n data
points and Ri = 0 for the remaining ones.

From a statistical point of view, the problem is that ignoring all
data beyond n produces inconsistent ML-estimates for the model
(1) whenever data are missing not at random in the sense that

PðR ¼ 1jX;YÞ – PðR ¼ 1jXÞ: ð2Þ

We now show, following Qin et al. (2002), how this inconsis-
tency can be removed. To that purpose, let F(y, x) be the joint dis-
tribution function of (Y, X) (no parametric model is needed for
this), let

wðy; x; hÞ :¼ PðR ¼ 1jY;X; hÞ

be some parametric model for observability (sometimes also called
accept-reject-model; see Crook and Banasik (2004)), let W:¼P(R = 1),
and consider the following semiparametric likelihood for h, W, and F:

Lnðh;W; FÞ ¼
Yn

i¼1

wðyi; xi; hÞdFðyi; xiÞ
" #

� ð1�WÞN�n
: ð3Þ

This function is maximized under the constraints

pi P 0;
Xn

i¼1

pi¼1;
Xn

i¼1

pi xi�lX

� �
¼ 0;and

Xn

i¼1

pi½wðyi;xi;hÞ�W� ¼ 0; ð4Þ

where pi = dF(yi, xi) = F(yi, xi) � F�(yi, xi), i.e. pi is the increase in the
joint distribution function at (yi, xi) and lX is either the known
expectation or the empirical mean of X. By introducing Lagrange
multipliers and profiling for all values of pi, it is seen that

pi ¼
1

n 1þ k>1 ðxi � lXÞ þ k2ðwðyi; xi; hÞ �WÞ
� � ;

where k1 and k2 are Lagrange multipliers. Substituting pi into (3) re-
sults in a profile likelihood that can be maximized numerically. (Qin
et al. (2002), Theorem 1) show that under mild regularity condi-
tions, the resulting empirical likelihood estimates for h and W are
consistent and asymptotically normal.

Here we are interested in the plug-in estimate p̂i of pi in order to
reweight the likelihood derived from (1). Doing this, we obtain

LI

n ðbÞ ¼
Yn

i¼1

p̂if ðyijxi;bÞ; ð5Þ

where f ðyijxi;bÞ ¼ ½PðYi ¼ 1jXi ¼ xi;bÞ�yi � ½1� PðYi ¼ 1jXi ¼ xi;bÞ�1�yi .
The full likelihood function is then given by

LI

n ðbÞ ¼
Yn

i¼1

1

n 1þ k̂>1 ðxi � l̂XÞ þ k̂2ðwðyi; xi; ĥÞ � cW Þh i
� expðx>bÞ

1þ expðx>bÞ

� �yi

� 1� expðx>bÞ
1þ expðx>bÞ

� �1�yi

: ð6Þ

The conventional ML-estimator b̂ which ignores all missings is
the solution to (6) without the weights p̂i. Our main theoretical re-
sult is that maximizing (6) yields a consistent and asymptotically
normal estimator ~b for b even in the case of (2), i.e. when missing-
ness cannot be ignored.

Theorem 1. Under mild regularity conditions to be specified in the
appendix, the modified ML-estimator ~b is weakly consistent andffiffiffiffi

N
p
ð~b� b0Þ!

d Nð0;VÞ;

where b0 denotes the true value of b.
The proof of this theorem and the description of the limiting

covariance matrix V are in the appendix.
Table 1 provides some finite sample Monte Carlo evidence for

N = 10,000, a common sample size in consumer credit scoring
applications. We consider the case of a single regressor, i.e., k = 1,
with values Xi�

iidNð0;4Þ and

PðYi ¼ 1jXi ¼ xi;bÞ ¼
expðb0 þ b1xiÞ

1þ expðb0 þ b1xiÞ
ði ¼ 1 . . . ;NÞ:

The observability of Y is governed by

wðyi; xi; hÞ ¼
expðh0 þ h1yiÞ

1þ expðh0 þ h1yiÞ
ði ¼ 1 . . . ;NÞ: ð7Þ
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