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a b s t r a c t

We reassess the recent finding that no established portfolio strategy outperforms the naively diversified
portfolio, 1/N, by developing a constrained minimum-variance portfolio strategy on a shrinkage theory
based framework. Our results show that our constrained minimum-variance portfolio yields significantly
lower out-of-sample variances than many established minimum-variance portfolio strategies. Further,
we observe that our portfolio strategy achieves higher Sharpe ratios than 1/N, amounting to an average
Sharpe ratio increase of 32.5% across our six empirical datasets. We find that our constrained minimum-
variance strategy is the only strategy that achieves the goal of improving the Sharpe ratio of 1/N consis-
tently and significantly. At the same time, our developed portfolio strategy achieves a comparatively low
turnover and exhibits no excessive short interest.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Since the foundation of modern portfolio theory by Markowitz
(1952), the development of new portfolio strategies has become
a horserace-like challenge among researchers. The sobering finding
that theoretically optimal, utility maximizing portfolios perform
poorly out-of-sample1 can be attributed to the error prone estima-
tion of expected returns, leading to unbalanced optimization results.
This result directed researchers’ attention to the minimum-variance
portfolio, the only portfolio on the efficient frontier that simply re-
quires the variance–covariance matrix as input parameter for the
optimization. For instance, Merton (1980), Jorion (1985), and Nelson
(1992) remark that variance–covariance estimates are relatively sta-
ble over time and can, hence, be predicted more reliably than ex-
pected returns. Nevertheless, DeMiguel et al. (2009b) have argued
that no single portfolio strategy from the existing portfolio selection
literature outperforms the naively diversified portfolio, 1/N, consis-
tently in terms of out-of-sample Sharpe ratio. Similar to Fletcher
(2009), we evaluate in this paper a broader range of minimum-var-
iance portfolios to challenge the findings of DeMiguel et al. (2009b).
Additionally, we develop a constrained minimum-variance portfolio
strategy that outperforms 1/N in terms of a lower out-of-sample var-
iance and a higher Sharpe ratio while, at the same time, yielding a

turnover and short interest that do not hamper the practical imple-
mentation of this portfolio strategy.

We propose a minimum-variance portfolio strategy with flexi-
ble upper and lower portfolio weight constraints. Incorporating
these constraints into the portfolio optimization process trades
off the reduction of sampling error and loss of sample information
(Jagannathan and Ma, 2003). On the one hand, weight constraints
ensure that portfolio weights are not too heavily driven by the
sampling error inherent in parameter estimates based on historical
data, which often leads to highly concentrated portfolios.2 On the
other hand, portfolio weight constraints cause a misspecification of
the optimization problem because the resulting portfolio weights
are less driven by potentially useful sample information (Green
and Hollifield, 1992). Consequently, incorporating portfolio weight
constraints into the portfolio optimization problem is promising if
the input parameters are error prone.

We calibrate portfolio weight constraints such that the desired
reduction of sampling error and the concomitant loss of sample
information is traded-off. Using this shrinkage theory based frame-
work, we introduce portfolio weight constraints which depend on
the error inherent in the empirical variance–covariance matrix
estimate. In particular, we impose the set of lower and upper port-
folio weight constraints that minimizes the sum of the mean
squared errors (MSE) of the covariance matrix entries. The latter
serves as a loss function, quantifying the trade-off between the
reduction of sampling error and loss of sample information.
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Our empirical results show that our constrained minimum-var-
iance portfolio with lower and upper portfolio weight constraints
achieves substantial out-of-sample variance reductions in compar-
ison to various minimum-variance portfolios. We observe that the
variance of our portfolio strategy achieves the lowest variances
among all twelve considered portfolio strategies. In terms of risk
adjusted performance, we observe that our portfolio strategy gen-
erates a 32.5% higher Sharpe ratio than 1/N. This Sharpe ratio in-
crease is statistically significant on five out of six datasets.
Further, we observe that our portfolio strategy achieves on average
a higher Sharpe ratio than every other benchmark strategy. This
finding is robust with respect to the estimation window period,
which we vary from 120 to 240 months.

Concerning the importance of weight constraints for the out-of-
sample portfolio performance, we observe that imposing solitary
lower or lower and upper weight constraints results in an equally
effective risk reduction. The risk adjusted performance of both
portfolios is on average equally good. However, we find that the
constrained minimum-variance portfolio with lower and upper
portfolio weight constraints achieves a less volatile Sharpe ratio
over the various datasets than the constrained minimum-variance
portfolio with solitary lower portfolio weight constraints. This is
reflected in the statistical significance of the outperformance over
1/N. While imposing lower and upper weight constraints yields on
five out of six datasets a significantly higher Sharpe ratio than 1/N,
imposing solitary lower weight constraints yields only on two
datasets a significantly higher Sharpe ratio. Further, we observe
that the constrained minimum-variance portfolio with lower and
upper portfolio weight constraints yields a lower turnover and
short interest than the constrained minimum-variance portfolio
with solitary lower weight constraints. Hence, we find that impos-
ing lower and upper portfolio weight constraints is beneficial with
respect to the resulting out-of-sample performance and the practi-
cal implementation of the portfolio strategy.

The impact of our ex ante calibrated weight constraints varies
with respect to the size of the investment universe. While the im-
posed constraints are loose for small portfolios, they are compara-
tively tight for larger investment universes. Specifically, we
observe for portfolios comprising 30 or more assets, that the ex ante
calibrated lower portfolio weight constraints are close to zero, i.e. a
short-sale constraint. While the lower portfolio weight constraints
of our minimum-variance strategies with solitary lower, respec-
tively lower and upper weight constraints are similar across all
investment universes, we find that the tightness of the additional
upper constraint is particularly pronounced for larger universes.

Our paper contributes to three lines of literature. First, we add
to the prevalent discussion whether optimized portfolios represent
a preferable investment vehicle over 1/N by amending the empir-
ical evidence of DeMiguel et al. (2009b) and Fletcher (2009). Con-
trary to recent contributions to this ongoing discussion by Pflug
and Pichler (2012) and Kritzman et al. (2010) that assess the con-
ditions rendering 1/N an optimal strategy, i.e. the reasons for the
unsatisfying performance of optimal portfolios, we develop a port-
folio strategy that outperforms 1/N consistently and significantly.
Thus, our paper relates to Chevrier and McCulloch (2008), DeMig-
uel et al. (2009a), and Tu and Zhou (2011), who claim to develop
portfolio strategies achieving consistently higher Sharpe ratios
than 1/N. However, neither Chevrier and McCulloch (2008) nor
Tu and Zhou (2011) provide statistical inference for their results.

Second, we extend previous work on portfolio optimization in
presence of constraints. Alexander and Baptista (2006) and Alexan-
der et al. (2007) evaluate the imposition of drawdown constraints,
while DeMiguel et al. (2009a) and Gotoh and Takeda (2011) assess
the impact of norm constraints on the portfolio optimization pro-
cess. Our paper relates more closely to Frost and Savarino (1988),
Grauer and Shen (2000), and Jagannathan and Ma (2003), evaluating

the role of portfolio weight constraints. While the aforementioned
work on weight constraints is concerned with arbitrarily chosen
or ex post determined upper and/or lower constraints, we postulate
a framework to determine these constraints ex ante. Our new ap-
proach should thus perform better out-of-sample given that flexible
ex ante constraints are better able to suit the data at hand.

Third, our framework represents a new approach to the estima-
tion of the variance–covariance matrix for portfolio optimization.
Similar to the Ledoit and Wolf (2003, 2004a,b) shrinkage strategies,
our approach imposes a data-dependent structure on the variance–
covariance matrix. Our approach, however, requires fewer assump-
tions than the aforementioned shrinkage estimators. In particular,
our framework requires neither any distributional assumptions,
such as iid returns, nor the identification of a shrinkage target,
which may have a significant impact on the out-of-sample portfo-
lio performance.

The remainder of the paper is organized as follows. Section 2
outlines our methodology and data, while Section 3 contains the
empirical results. Section 4 reports the robustness checks, Section 5
concludes.

2. Methodology and data

2.1. Calibrating portfolio weight constraints

We consider the standard myopic constrained minimum-variance
portfolio optimization problem. In particular, the objective is the
minimization of the portfolio variance, w0Rw, where w denotes the
column vector of optimal portfolio weights and R the population var-
iance–covariance matrix. Since R is not observable, an estimate based
on the available sample information has to be used instead. For the
purpose of our constrained minimum-variance portfolio strategy,
we use the sample variance–covariance matrix, S ¼ 1

s�1 R0R, as an esti-
mator of R, where R denotes the s� N matrix of de-meaned (in-sam-
ple) returns, s the number of in-sample returns, and N the number of
assets. Accordingly, the sample based estimate of the portfolio vari-
ance is given by ŵ0Sŵ, where ŵ represents the sample estimate of
w. Formally, we may express the constrained minimum-variance
portfolio optimization problem as follows3:

ŵ
min

ŵ0Sŵ ð1Þ
s:t: ŵ01N ¼ 1; ð2Þ

ŵi P wmin; for i ¼ 1;2; . . . ;N; ð3Þ
ŵi 6 wmax; for i ¼ 1;2; . . . ;N: ð4Þ

The Kuhn–Tucker conditions (necessary and sufficient) are
accordingly:X

j

bSi;jŵj � ki þ di ¼ k0 P 0; for i ¼ 1;2; . . . ;N;

ki P 0 and ki ¼ 0 if ŵi > wmin; for i ¼ 1;2; . . . ;N;

di P 0 anddi ¼ 0 if ŵi < wmax; for i ¼ 1;2 . . . ;N:

The notation is as follows: 1N denotes the column vector of ones
of appropriate size, k the column vector of Lagrange multipliers for
the lower portfolio weight constraint, d the column vector of multi-
pliers for the upper portfolio weight constraints, k0 the multiplier for
the portfolio weights to sum up to unity, and wmax as well as wmin

denote column vectors with uniform elements such that every asset
has the same upper and lower weight constraint. Let ŵþþ denote the
solution to the constrained minimum-variance portfolio optimiza-
tion problem in (1)–(4) and 1N a conformable column vector of ones.
We may then state the following proposition:

3 We solve the constrained minimum-variance portfolio optimization problem
using the Mosek quadratic programming solver quadprog for MATLAB.
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