
An exploratory study on ontology engineering
for software architecture documentation

K.A. de Graaf a,*, P. Liang a,b, A. Tang c, W.R. van Hage d, H. van Vliet a

a VU University Amsterdam, Amsterdam, The Netherlands
b Wuhan University, Wuhan, China
c Swinburne University of Technology, Melbourne, Australia
d SynerScope B.V., Eindhoven, The Netherlands

1. Introduction

For a Software Architecture (SA1) to be useful, it needs to be
understood [1] and effectively communicated between its
designers and its users [2]. Documenting the Architectural
Knowledge (AK) in a SA facilitates its communication and
understanding. AK can be defined as ‘‘the integrated representation

of the software architecture of a software-intensive system (or a family

of systems), the architectural design decisions, and the external

context/environment’’ [3].

It is common for AK to be documented in file-based
documents such as text files, diagrams, source code, and meeting
notes. This however introduces practical limitations as it is hard
to describe AK unambiguously and comprehensively for all of its
different uses. Additionally, AK is highly interrelated, making it
hard to support the needs of different users by a single document
indexing structure.

In order to address these limitations, we study ontology-based
SA documentation, in which AK is made explicit and unambiguous
by applying a semantic structure. An ontology refers to a formal
domain model describing its concepts and relationships among
concepts [4]. In [5] de Graaf et al. report on a controlled experiment
that was conducted in a large and complex industrial software
project. The results provided empirical evidence that ontology-
based SA documentation is more effective and efficient for AK
retrieval than file-based SA documentation.

Computers in Industry 65 (2014) 1053–1064

A R T I C L E I N F O

Article history:

Received 20 June 2013

Received in revised form 11 April 2014

Accepted 16 April 2014

Available online 27 May 2014

Keywords:

Ontology engineering

Software architecture

Software ontology

Ontology-based documentation

Knowledge acquisition

Knowledge management

Abbreviations:

SA, software architecture

AK, architectural knowledge

HTML, hypertext markup language

WYSIWYG, what you see is what you get

GUI, graphical user interface

CF, contextual factor

A B S T R A C T

The usefulness of Software Architecture (SA) documentation depends on how well its Architectural

Knowledge (AK) can be retrieved by the stakeholders in a software project. Recent findings show that the

use of ontology-based SA documentation is promising. However, different roles in software development

have different needs for AK, and building an ontology to suit these needs is challenging. In this paper we

describe an approach to build an ontology for SA documentation. This approach involves the use of

typical questions for eliciting and constructing an ontology. We outline eight contextual factors, which

influence the successful construction of an ontology, especially in complex software projects with

diverse AK users. We tested our ‘typical question’ approach in a case study and report how it can be used

for acquiring and modeling AK needs.

� 2014 Elsevier B.V. All rights reserved.

* Corresponding author. Tel.: +31 6 18 47 91 32

E-mail addresses: ka.de.graaf@vu.nl (K.A. de Graaf), liangp@cs.vu.nl (P. Liang),

atang@swin.edu.au (A. Tang), willem.van.hage@synerscope.com (W.R. van Hage),

hans@cs.vu.nl (H. van Vliet).
1 See ‘Abbreviations’ under Article Info for a list of abbreviations used in this paper.

Contents lists available at ScienceDirect

Computers in Industry

jo ur n al ho m epag e: ww w.els evier . c om / lo cat e/co mp in d

http://dx.doi.org/10.1016/j.compind.2014.04.006

0166-3615/� 2014 Elsevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2014.04.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2014.04.006&domain=pdf
http://dx.doi.org/10.1016/j.compind.2014.04.006
mailto:ka.de.graaf@vu.nl
mailto:liangp@cs.vu.nl
mailto:atang@swin.edu.au
mailto:willem.van.hage@synerscope.com
mailto:hans@cs.vu.nl
http://www.sciencedirect.com/science/journal/01663615
www.elsevier.com/locate/compind
http://dx.doi.org/10.1016/j.compind.2014.04.006


The authors of this paper had to implement ontology-based SA
documentation in the software project in which this industrial
experiment was executed. To do so, we had to consider what
ontology engineering approach would be suitable. This paper is
about building the ontology structure for ontology-based SA
documentation. It is not about instantiating (or ‘populating’) this
ontology or about the experiment in which the ontology was
populated, as described in [5].

Developing an ontology for a software project in industry
should be economically feasible, i.e. it should be efficient and
accurate, for organization and individual users [6]. If the ontology
is inaccurate, documentation users will not retrieve or understand
the AK that they need. Users would lose interest and confidence in
ontology-based SA documentation, and revert to other means to
get the required AK.

In the context of large software projects it can take much time
and effort to develop an accurate ontology. Knowledge acquisition
from many diverse stakeholders, each having their own needs and
views [1] of AK, is required to build an accurate ontology. These
users of AK are generally pressed for time and their primary
interest is seldom about making documentation. Moreover, the AK
needed by users in large software projects is often domain specific
and complex.

Developing the ontology is not a one-time effort because the
AK needs of SA documentation users shift over time. For example,
during development users will be interested in AK that relates
requirements to the components implementing those require-
ments, while during integration testing (other) users might
be interested in relations between software releases and
requirements coverage. Shifting AK needs necessitates a regular
evaluation and revision of the constructed ontology.

In this paper we describe eight contextual factors in software
projects. These contextual factors influence ontology engineering
for SA documentation, especially in large and complex projects. We
devised a ‘typical question’ approach for ontology construction
that takes the contextual factors in large and complex software
projects into account. In this approach typical questions about AK
are acquired from SA documentation users and used to build an
ontology. These typical questions are frequently asked by AK
users2 during their everyday tasks, i.e. questions that represent
their everyday AK needs.

We applied the ‘typical question’ approach in an exploratory
industrial case study which provided several insights. In the case
study we explored how well our ‘typical question’ approach was
applied to construct a useful ontology by acquiring and modeling
AK needs of many diverse users that use SA documentation in
different projects and product lines. The ‘typical question’
approach can continuously refine the AK ontology when AK needs
evolve.

This paper is motivated by the lack of applied ontology
engineering approaches for constructing an ontology for SA
documentation. We make the following contributions:

� Illustrate a ‘typical question’ approach for constructing the
ontology used in ontology-based SA documentation.
� Outline important contextual factors that influence ontology

engineering for SA documentation in software projects.
� Demonstrate how the ‘typical question’ approach can be applied

through an exploratory case study in an industry software
project.

This paper is organized as follows. Background of ontology-
based SA documentation, ontology engineering, knowledge
acquisition, and Grounded Theory is given in Section 2.

Section 3 describes our ‘typical question’ approach for ontology
construction. Section 4 describes the contextual factors that
influence ontology engineering for SA documentation in software
projects. Section 5 reports the exploratory case study and the
lessons learned from it. Section 6 presents related work and
Section 7 concludes this paper.

2. Background

2.1. Ontology-based SA Documentation

Many relationships exist between AK in SA documentation, e.g.,
between requirements, decisions, and components. Consider a
single decision recorded in a document. A software engineer needs
to know how the decision impacts components and interfaces s/he
is working on. When evaluating the decision a software architect is
interested in its rationale, alternatives, related decisions, and
related requirements. A quality assurance manager might need to
know all quality attributes that the decision impacts or vice versa.

The linear organizational nature of file-based documentation
makes it hard to provide a structuring of AK that is suitable for
every user. This structuring can be done using views [1],
perspectives, or some other sectioning in a Table of Contents.
However, once written down, the structuring of AK becomes static
and linear in file-based documentation causing difficulties for
users that want to retrieve AK that is unsupported by the structure.
Furthermore, it can be troublesome to describe AK unambiguously
in documentation, i.e. clearly, consistently, with explicit notations
for AK and AK interrelations, especially when documentation and
AK evolves.

On the other hand, an ontology provides a type of AK
structuring which facilitates AK retrieval by different types of
documentation users. Knowledge in an ontology can be searched
by concepts and reasoned with. The type (or ‘class’) of AK becomes
explicit in an ontology and the relationships between AK have
explicit semantics, e.g., ‘realized by’ and ‘results in’. This improves
the efficiency and effectiveness of AK retrieval [5].

Users of ontology-based SA documentation can retrieve AK
using a semantic wiki [7] or plug-ins in text-editors [8]. Semantic
wikis allow for web-based visualization and management of
(ontology and its instances in) knowledge bases and semantic-
enhanced search facilities such as graph-like exploration,
faceting, and filtering of knowledge instances based on semantic
interrelations.

An advantage of ontology-based documentation in a semantic
wiki over traditional wiki and hypertext systems is the use of
semantic relationships. Hyperlinks provide pointers to information
but the pointers do not specify the meaning of relationships.
Whereas semantic relationships can be specified in ontology-
based documentation, each with an explicit name, type, and
meaning. Moreover, one can assign formal properties to semantic
relationships, e.g., transitivity and symmetry, which allow for
automatic inference and reasoning.

The ontology-based SA documentation that was used in the
experiment in [5] consists of a semantic wiki (see http://
archimind.nl/archimind/) in which fragments, sections, and
diagrams from file-based SA documentation are stored as HTML
in wikipages. Basic version control, a WYSIWYG editor to update
wikipage content, and change history, support maintenance
activities. Using semantic annotation, the AK in wikipage content
(e.g., a description of ‘GUI’) is highlighted and instantiated as
belonging to a class of AK (e.g., component) and having relation-
ships (e.g., ‘satisfies’) to other AK (e.g., requirement ‘login’).

When an AK user views an AK instance, e.g., GUI, s/he can clearly
see that GUI is a component, with relationship ‘satisfies’ to
requirement login, and what SA documentation text (in wikipages)2 We consider AK users the same as SA documentation users in this work.

K.A. de Graaf et al. / Computers in Industry 65 (2014) 1053–10641054

http://archimind.nl/archimind/
http://archimind.nl/archimind/


Download English Version:

https://daneshyari.com/en/article/508980

Download Persian Version:

https://daneshyari.com/article/508980

Daneshyari.com

https://daneshyari.com/en/article/508980
https://daneshyari.com/article/508980
https://daneshyari.com

