
Cloud based real-time collaborative filtering for item–item
recommendations

Rafael Pereira a, Hélio Lopes a,*, Karin Breitman a,c, Vicente Mundim b,
Wandenberg Peixoto b

a Department of Informatics, Pontifical Catholic University of Rio de Janeiro, Rua Marquês de São Vicente 225, Gávea, Rio de Janeiro 22.453-900, Brazil
b WebMidia, Globo.com, Brazil
c EMC2, Brazil

1. Introduction

The ability to offer relevant suggestions to users is becoming
extremely important for web applications, particularly those
whose business models are dependent on audience ratings, e.g.,
content commercialization and product sales [1]. Moreover,
because effective recommendations play such an important role
in user experience, users frequently resort to recommendations as
a means for content discovery. This is the case with Amazon [2,3]
and Netflix [4–6].

Recommendation systems [7,8] have been recognized as an
important tool on web science and e-commerce applications
[9,10]. They usually combine user profiles and product information
to generate recommendations. In other words, a recommendation
system is composed of contextual data, which is the information
that the system has before it starts the recommendation process,
input data, which is the information received for the recommen-
dation process, and an algorithm that uses the context and input
data to model recommendations.

Collaborative filtering [11–14] is a recommendation technique
that resorts to the user–item interaction history to find relation-
ships between them. One example of such a relationship is
computing the similarity between two items, such as videos [15],
both viewed by the same group of users. In this case, no contextual
information about the items is considered, which means that the
recommendation algorithm does not have any information on
which are the items and what are their types or characteristics.
According to Herlocker et al. [16], collaborative filtering is
considered the finest technique of choice for recommendation
algorithms. However, there are several challenges associated with
collaborative filtering engines [10]: these algorithms must have
sufficient performance to manipulate large sparse datasets, scale
as the numbers of users and items grow, and retrieve relevant
recommendations within a reasonable timeframe.

Thus, increasing the numbers of users and items poses great
challenges for this type of system. One of these challenges is to
improve the quality of recommendations made to users, since good
recommendations increase user fidelity. A further challenge is the
appropriate scaling of the system to retain its effectiveness. These
two challenges tend to be conflicting; to obtain fast recommenda-
tions the model should be simple to use, but this reduces the overall
quality of the recommendations. Nevertheless, an efficient recom-
mendation engine must take both aspects into consideration.

Additionally, there are specific scenarios that require the real-
time processing of input data to produce relevant recommendations.

Computers in Industry 65 (2014) 279–290

A R T I C L E I N F O

Article history:

Received 22 January 2013

Received in revised form 10 September 2013

Accepted 6 November 2013

Available online 2 December 2013

Keywords:

Distributed architecture

Cloud computing

System architecture

Service orientation

Collaborative filtering

A B S T R A C T

We describe a large scale implementation of a video recommendation system in use by the largest media

group in Latin America. Taking advantage of existing recommendation system techniques, the proposed

architecture goes beyond the state of the art by making use of a commercial cloud computing platform to

provide scalability, reduce costs and, more importantly, response times. We discuss the implementation

in detail, in particular the design of cloud based features. We also provide a comprehensive

generalization of the architecture that allows its application in other settings.

� 2013 Elsevier B.V. All rights reserved.

* Corresponding author. Tel.: +55 21999945339; fax: +55 2135271500.

E-mail addresses: rpereira@inf.puc-rio.br (R. Pereira), lopes@inf.puc-rio.br,

hcvlopes@gmail.com (H. Lopes), karin@inf.puc-rio.br (K. Breitman),

vicente.mundim@corp.globo.com (V. Mundim), wandenberg@corp.globo.com

(W. Peixoto).

Contents lists available at ScienceDirect

Computers in Industry

jo ur n al ho m epag e: ww w.els evier . c om / lo cat e/co mp in d

0166-3615/$ – see front matter � 2013 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.compind.2013.11.005

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2013.11.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2013.11.005&domain=pdf
http://dx.doi.org/10.1016/j.compind.2013.11.005
mailto:rpereira@inf.puc-rio.br
mailto:lopes@inf.puc-rio.br
mailto:hcvlopes@gmail.com
mailto:karin@inf.puc-rio.br
mailto:vicente.mundim@corp.globo.com
mailto:wandenberg@corp.globo.com
http://www.sciencedirect.com/science/journal/01663615
http://dx.doi.org/www.elsevier.com/locate/compind
http://dx.doi.org/10.1016/j.compind.2013.11.005


This is the case in breaking news, where the content of interest is
very volatile, and may become obsolete in a manner of minutes after
being posted [17,18]. In cases such as this there are two main
challenges: one is of producing relevant recommendations in real-
time, and the other is to deal with scalability. This scenario adds an
element of complexity to the recommendation models used by
Amazon and Netflix, for example, which deal with less volatile items.

An ideal recommendation engine is capable of both scaling up, as
the number of items and/or users grows, and producing a relevant
recommendation in as small a time as possible (almost real-time).

One approach for scaling up the recommendation engine is
through input data sampling [19]. With this alternative it is
possible to produce recommendations within a reasonable amount
of time, using available, but often limited, computational
resources. This process, of course, tends to reduce the accuracy
of the recommendation, which may not be relevant to the user in
question. Therefore, it is highly desirable that all available data is
used to produce the best recommendation possible [2].

The ability to contract computing resources on demand, from a
cloud computing vendor, lifts the resource availability limitation,
and thus enables the development of a high quality solution, where
all available input data is used to produce recommendations, while
at the same time, allowing for the system to be scaled up (or down)
to adapt to fluctuations in demand [20–23]. It is important to note,
however, that cloud computing environments provide the neces-
sary resources to guarantee that all computation can be done.
What is not guaranteed is that the computation can be done time
effectively, i.e., producing real-time recommendations irrespective
of the numbers of items and users in question. This is a challenge
and the major motivation of this work.

1.1. Contributions

The main contribution of the paper is a real-life implementation
that combines state-of the art recommendation techniques to
emerging cloud computing technology in order to provide a
scalable, cost, and time efficient solution of a real-time online
recommendation system. The proposed system architecture
provides a solution for computing online item similarity, without
having to make use of either model simplification or input data
sampling [2]. Our proposal makes use of on-demand cloud
computing resources to scale up and down, and adapt to variations
in the number of items as well as users, thereby meeting the needs
of large content portals, i.e., those dealing with several million hits
on a daily basis and trading with catalogs with millions of different
items. To validate this architecture, we implemented and tested it
in a real production scenario of video recommendations on the
Globo.com portal. Globo.com is the Internet branch of Globo
Organizations, the largest media group in Latin America entertain-
ment industry, and the leader in the broadcasting media segment
for Brazilian Internet audiences. The results from this implemen-
tation show that it is possible to greatly reduce recommendation
times with low financial costs.

1.2. Paper outline

In the next section, we introduce the key concepts, proposed by
related work, to generate item–item recommendations through
collaborative filtering, and the challenges associated with this
process. Section 3 presents the proposed architecture and
describes how the issues associated with such process are
addressed. Section 4 discusses how the proposed architecture
was deployed in the cloud in a real production environment, and
the results obtained with those tests are discussed in Section 5.
Section 6 compares our work with related ones. Finally, Section 7
presents the conclusions, discussing further works.

2. Item–item recommendation

It is common in collaborative filtering systems to store user
profiles as vectors of items and ratings [8]. These vectors tend to
increase continually as users interact with the system. Some
systems take into account temporal dynamics to discount the
standard deviations in user interests over time [24,25]. User
feedback may be binary, e.g., liked or not liked, or valued according
to preference. Netflix [4–6], MovieLens [26], and Amazon [3] are
among those that adopt the latter approach.

The two most common ways of implementing a solution for
collaborative filtering are the use of neighborhood algorithms or
graphs, and latent factorization models [11].

Neighborhood algorithms focus on extracting the relationship
between users or items to build a model based on a graph capable
of describing these adjacencies.

� Item–item methods build a neighborhood graph with vertexes
connecting similar items.
� User–user methods build a neighborhood graph with vertexes

connecting users with similar preferences.

The idea behind an item–item recommendation engine is, for
any given item, finding a set of items that is most similar to the
item in question. Similarity is measured using a combination of
input data, generally structured in a bi-dimensional matrix with
the first dimension representing users and the second items [8].
The ultimate goals of an item–item recommendation system are to
predict how users would rate an item that is not yet rated, and to
recommend items from the collection.

With respect to user ratings, recommendation engines may use
different types of feedback. Ideally, explicit feedback is preferred,
with users explicitly indicating their preferences. However, in
most situations, such information is not available. In these cases, it
is necessary to infer user preferences through implicit feedback
[27], which indirectly represents a user’s preferences based on his/
her behavior. Implicit feedback is obtained from user navigation
history, the list of products bought, and even from the mouse path
on specific screens.

After obtaining user feedback, for example, information that a
user accessed a particular item, the input can be stored in a square
matrix representing users and items, where, in this case, each
element denotes whether an item was accessed by a user. Thus,
considering each item separately, we have a multidimensional
vector with each dimension representing a user. Consequently, as
the number of distinct users in the system increases, the number of
dimensions in the vector also increases. Typically, large e-
commerce or content portals have tens or even hundreds of
millions of unique visitors per month, which means that their item
vectors will have a similar number of dimensions.

Therefore, the problem of obtaining the similarity between two
specific items can be translated into one of obtaining the similarity
between the two multidimensional vectors representing the items.
One of the possible approaches for doing this is by calculating the
cosine between these vectors [8]. Let us suppose that two items,
say I1 and I2 in RM , where M is the number of users, then the
similarity between these two items are calculated as follow:

SimilarityðI1; I2Þ ¼ cosðffðI1; I2ÞÞ ¼ hI1; I2i
jjI1jj � jjI2jj

; (1)

where n, h . , . i and jj � jj represent, respectively, the angle between
the two vectors, the usual inner product in RM and the Euclidian
vector norm.

Having calculated the similarity between a specific item and all
others, one can then obtain the items that are most similar to one

R. Pereira et al. / Computers in Industry 65 (2014) 279–290280



Download English Version:

https://daneshyari.com/en/article/509016

Download Persian Version:

https://daneshyari.com/article/509016

Daneshyari.com

https://daneshyari.com/en/article/509016
https://daneshyari.com/article/509016
https://daneshyari.com

