
Association-Based Active Access Control models with balanced
scalability and flexibility

Zhai Zhi-niana,*, Lu Ya-huib, Zhang Ping-Jianc, Chen Zhi-haod

a School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China
b School of Computer and Software, Shenzhen University, Shenzhen, China
c School of Computer Science and Engineering, South China University of Technology, Guangzhou, China
d Center for Software Engineering, University of Southern California, Los Angeles, United States

1. Introduction

Business Process Management (BPM) is an important branch of
Computer Supported Collaborative Work (CSCW). In a BPM system
for some business goal there are complicated divisions of labor,
thus a flexible and user-transparent protection should be
performed in its access control [1]. On the other side, such a
system is subject to enterprise-level application, and there are
plenty of subjects, objects, permissions and constraints to
administrate in a scalable and maintainable way. For correspond-
ing access control models, both the flexibility of business
collaboration and the scalability of security administration are
definitely necessary.

In the 1990s, to improve the adaptability to business process in
access control, Thomas and Atluri et al. proposed two critical
features in their respective models: (1) to authorize permissions
according to the requirements of a task [2]; (2) to synchronize the
authorization-flow with the workflow [3]. That is to say, the

permissions for a task would not be granted until the task is
started, and once it is finished the granted permissions should be
revoked. Knorr proved that by this way the data misuse
possibilities will be reduced [4] and then the Principle of Least
Privilege (PoLP) [5,6] will be better enforced. By these work a
paradigm of Active Access Control (AAC) is initiated which is
flexible in business context adaption. However there might be
millions of tasks in large-scale business environment, it is a huge
burden to assign each task with its candidate executors and
required permissions.

In 2003, Oh and Park proposed Task-Role-Based Access Control
(T-RBAC) [7], introducing the scalability of RBAC [8,9] into AAC. It
comes with a 3-step (permission-task-role-user) authorization
mechanism and Supervision-Role Hierarchy (S-RH). With the
intermediary of a role, m*n relationships between tasks and its
candidate executors could be reduced into m task-role and n user-
role relationships. With task inheritance in S-RH, the back-and-
forth of task allocations between managers and their subordinates
could be reduced. In most other 3-step models, such as literature
[10,11], S-RH is replaced with the role hierarchy of RBAC to reduce
task allocations between general superior–inferior roles. However,
for permission assignment, there lack effective means in these

Computers in Industry 65 (2014) 116–123

A R T I C L E I N F O

Article history:

Received 6 January 2012

Received in revised form 15 April 2013

Accepted 31 July 2013

Available online 17 September 2013

Keywords:

Access control

Workflow

Task

Role

Scalability

Flexibility

A B S T R A C T

In existing Active Access Control (AAC) models, the scalability and flexibility of security policy

specification should be well balanced, especially: (1) authorizations to plenty of tasks should be

simplified; (2) team workflows should be enabled; (3) fine-grained constraints should be enforced. To

address this issue, a family of Association-Based Active Access Control (ABAAC) models is proposed. In

the minimal model ABAAC0, users are assigned to roles while permissions are assigned to task-role

associations. In a workflow case, to execute such an association some users assigned to its component

role will be allocated. The association’s assigned permissions can be performed by them during the task

is running in the case. In ABAAC1, a generalized association is employed to extract common

authorizations from multiple associations. In ABAAC2, a fine-grained separation of duty (SoD) is enforced

among associations. In the maximal model ABAAC3, all these features are integrated, and similar

constraints can be specified more concisely. Using a software workflow, case validation is performed.

Comparison with a representative association based AAC model and the most scalable AAC model so far

indicates that: (1) enough scalability is achieved; (2) without decomposition of a task, different

permissions can be authorized to multiple roles in it; (3) separation of more fine-grained duties than

roles and tasks can be enforced.

� 2013 Elsevier B.V. All rights reserved.

* Corresponding author. Tel.: +86 13456748762.

E-mail address: zhaizhinian@gmail.com (Z.-n. Zhai).

Contents lists available at ScienceDirect

Computers in Industry

jo ur n al ho m epag e: ww w.els evier . c om / lo cat e/co mp in d

0166-3615/$ – see front matter � 2013 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.compind.2013.07.013

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2013.07.013&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2013.07.013&domain=pdf
http://dx.doi.org/10.1016/j.compind.2013.07.013
mailto:zhaizhinian@gmail.com
http://www.sciencedirect.com/science/journal/01663615
http://dx.doi.org/10.1016/j.compind.2013.07.013


models. In a business process the required permissions of tasks are
quite likely to intersect each other, and then repetitive authoriza-
tions will be raised. During the phase of maintenance, these
authorizations must be repetitively modified or deleted too.
Therefore the administrative burden of the 3-step mechanism is
still huge. In 2011, Zhai and Lu proposed Scalability Enhanced
Active-Passive-Integrated Access Control (SEA-PIAC) [12] model in
which the task specialization, not the task hierarchy, is used to
extract repetitive authorizations among tasks. Their approach is
quite effective since the specialization relationship is extremely
widespread and any authorization to a task will definitely be
inherited by all its specialized tasks. By comparison, the task
hierarchy is quite awkward in that. First, little authorization
extracting power is provided with the concept of sub-task. For
example in a software project [12], there are many programming
tasks such as framework, component-1, . . ., component-k pro-
gramming. Each requires read-plan, read-requirement, read-
design, read-code, execute-makefile and write-deploy permissions
and then repetitions exist. Because of the diversity of these
permissions, it is difficult to separate most of them with a few
coarse-grained sub-tasks. If they are separated with many tiny
sub-tasks such as plan reading, requirement reading, design
reading, code reading and building, the repetitive permissions will
just be replaced by almost as many repetitive sub-tasks. Obviously
the programming tasks with their authorizations should be
generalized, rather than decomposed. What about a super-task
then? It is not quite suitable either, which will be analyzed in the
next paragraph. Although in the enforced 3-step mechanism both
the task allocation and permissions assignment can be well
simplified, the collaboration of multiple roles with different
permissions in a task, i.e. a team-task, is not supported. This
feature has been introduced in the field of BPM [13] as far back as
2001. It is very elementary to improve the flexibility of team
collaboration in workflows [14]. Besides, it is non-substitutable
since some task with multiple roles, e.g. a conference, cannot be
decomposed into multiple tasks each of which is executed by a
single role. Actually a team-task is impossible to implement under
the 3-step framework, because a task (with all its permissions)
must be assigned to a role in a manner of All-or-Nothing. The fact
that a task is assigned to multiple roles just means that each role is
qualified to execute the whole task.

As another modeling approach, permissions are authorized to
some association of task and role. Since a task may be associated to
multiple roles and these associations may further be assigned
different permissions, a team-task will be naturally enabled. In
Atluri’s model [15] subsequent to [3], a task may have multiple
Authorization Templates (AT) each of which has a different role as
its subject component. However, to assign k different permissions
to a role in a task, k ATs (each of which associates a permission to
the role) must be related to the task, and then 2k relationships
must be specified manually. Not all these costs are necessary. In
2002, Wu and Sheth proposed a workflow authorization model
[16] in which permissions are assigned to role-task pairs. To assign
k permissions to a role in a task, only k + 1 relationships, i.e. a role-
task pair and k permission assignments to it, should be specified
manually. To make some simplification, two implicit authorization
rules are suggested in it, i.e. a permission assigned to a role r in
performing a task t will propagate to: (1) all the roles which are
superior to r; (2) all the sub-tasks which are included in t. However,
a workflow has multiple cases to be processed and in any case
which user to perform a task should be specified further. Before
this resource allocation step in terms of workflow, a user u whose
role is r cannot use a permission p in any instance of a task t even
some role r0 inferior to r is assigned p in t. In fact, once a user of r0 or
r is allocated to execute an instance of t as role r0 only he will be
authorized to use p in this instance and no other user will be

authorized this permission by inheritance. Nevertheless, the rule
(1) is useful in specifying candidate executors for a task before
the instance-level resource allocation. As for the rule (2), an
authorization inheritance mechanism does be given, but its
applicable scope is quite limited. A real task might be
decomposed in a unpredictable way, but this rule relies on
too fixed a situation. For example, a system analysis task sa is
undertaken by a role analyst a with a permission write–
requirement (w–r). Along with the analysis progress, k sub-
systems are identified and the requirement r is divided into k

parts r1, r2, . . ., rk. Accordingly the task sa is decomposed into k

sub-tasks sa1, sa2, . . ., sak where sai (i = 1, . . ., k) should be
undertaken by a with a permission w–ri only. However,
according to the rule (2), a is still permitted to write the whole
r in sai. As another possibility, sa might be decomposed into
three sub-tasks: investigation iv, draft df and review rw. If r is
considered defective in rw performed by the project manager, it
must be revised in df and once again reviewed. Obviously r could
not be write by a during the process of rw. However, according
to the rule (2), a is still permitted to write into r under review.
Since a composing relationship is somewhat loose compared to a
specialization relationship with rigorous logic, different tasks
with diversiform authorizations may be assembled to achieve
the goal of their super-task. It is difficult to deduce that the
authorizations of a role (or a user) in a task will propagate to all
its sub-tasks. Hereto the leftover issue in the last paragraph is
also interpreted. In 2008, Qiu and Ma proposed a model [17] in
which a task may have multiple authorization policies each of
which associates some permissions and their authorized roles.
As a result, in the same task n authorizations to m roles can be
reduced to n permission-policy and m role-policy relationships.
However, repetitive authorizations among different tasks cannot
be handled. In 2009, Cao and Chen et al. proposed a policy-based
authorization model for team-enabled workflows [14]. However,
it does not concern the permission assignment since its main
focus is the organization dimension of workflows. Furthermore
in the above team-task enabled authorization models, the
corresponding separation of duty (SoD) [5,18] are not specified.
In fact, there is a composite duty to be constrained, which is
determined by a task together with one of its participant roles.
The most elementary requirement is that in the same workflow
case once a user has executed a task t as a role r, he will be
prevented to execute a task t0 as a role r0. In the literature [15],
constraints are specified based on potential authorizations each
of which is a (user, object, privilege) tuple subject to a task in a
case of the workflow. Since in a potential authorization the role
of the user is not identified, the semantics of such separation of
composite duties cannot be expressed. In the literature [14], a
constraint policy will be specified using its SQL-like syntax.
However, in its structure of ‘‘reject <resource> for <activity>’’,
a user cannot be prohibited to execute a task as a specific role,
and then the separation of composite duties cannot be specified.

In summary, the scalability and flexibility of security policy
specification have not been well balanced in existing AAC models.
To address this issue, a model family of Association-Based Active
Access Control (ABAAC) is proposed in this paper. With task-role
associations as the basis of authorization, different permissions
can be authorized to multiple roles in the same task. By identifying
exclusive associations, fine-grained SoD constraints can be
enforced. A concise inheritance mechanism, the isa relationship
on task-role associations, can be deduced based on the associa-
tions, the task hierarchy and role specialization relationships. By
this mechanism, repetitive authorizations and constraints can be
reduced effectively.

The rest of this paper is organized as follow. In Section 2, the
ABAAC model family is formally defined. In Section 3, the main

Z.- Zhai et al. / Computers in Industry 65 (2014) 116–123 117



Download English Version:

https://daneshyari.com/en/article/509034

Download Persian Version:

https://daneshyari.com/article/509034

Daneshyari.com

https://daneshyari.com/en/article/509034
https://daneshyari.com/article/509034
https://daneshyari.com

