Computers in Industry 63 (2012) 471-481

journal homepage: www.elsevier.com/locate/compind

Contents lists available at SciVerse ScienceDirect

Computers in Industry

COMPUTERS IN .
INDUSTRY, -

Definition and evaluation of product configurator development strategies

Anders Haug ®*, Lars Hvam®, Niels Henrik Mortensen ¢

2 Department of Entrepreneurship and Relationship Management, University of Southern Denmark, Engstien 1, 6000 Kolding, Denmark
P Department of Manufacturing Engineering and Management, Technical University of Denmark, Building 425, 2800 Kgs. Lyngby, Denmark
¢ Department of Mechanical Engineering, Technical University of Denmark, Building 404, 2800 Kgs. Lyngby, Denmark

ARTICLE INFO ABSTRACT

Article history:

Received 11 February 2011

Received in revised form 18 November 2011
Accepted 1 February 2012

Available online 29 February 2012

Keywords:

Product configuration
Product configurator
Knowledge acquisition
Knowledge engineering
Expert systems

Product configurators represent one of the most successful applications of artificial intelligence
principles. Product configurators are a subtype of software-based expert systems with a focus on the
creation of product specifications. The use of product configurators has resulted in many positive effects
in engineering-oriented companies such as reduced lead times, fewer errors, shorter learning periods for
new employees, etc. Unfortunately, many configuration projects also fail because the task of developing
the configurator turns out to be much more difficult and time-consuming than anticipated. Thus, it is
crucial to apply the appropriate strategy. However, the literature does not discuss different strategic
alternatives in a detailed manner; it only provides generalised recommendations of single strategies. To
deal with this issue, this paper defines and compares seven different strategies for the development of
product configurators. The relevance of the defined strategies is supported by seven named case studies.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Many companies experience an increasing demand for cus-
tomer-specific products while competition on prices and delivery
times is hard [1,2]. Mass customization is a manufacturing
paradigm that focuses on satisfying individual customer require-
ments while keeping manufacturing costs and delivery times close
to those of mass-produced products [3]. Mass customization can
be seen from two very different perspectives, depending on
whether the company that pursues a mass customization strategy
is an engineering-to-order company or a mass production
company [4]. This paper focuses on engineering-to-order compa-
nies, in which the use of product configurators in many cases has
produced significant benefits.

Product configurators represent one of the most successful
applications of artificial intelligence principles [5-7]. A product
configurator is a subtype of software-based expert systems (or
knowledge-based systems) with a focus on the creation of product
specifications. A product configurator can be defined as “a
software-based expert system that supports the user in the
creation of product specifications by restricting how predefined
entities (physical or non-physical) and their properties (fixed or
variable) may be combined” [8]. In the context of engineering-
oriented companies, the use of product configurators has resulted

* Corresponding author. Tel.: +45 65501350; fax: +45 65501357.
E-mail addresses: adg@sam.sdu.dk (A. Haug), lhv@man.dtu.dk (L. Hvam),
nhmo@mek.dtu.dk (N.H. Mortensen).

0166-3615/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.compind.2012.02.001

in a range of benefits such as shorter lead times, improved quality
of product specifications, preservation of knowledge, use of fewer
resources for specifying products, optimised products, less routine
work, improved certainty of delivery, and less time needed for
training new employees (e.g., [9-11]).

Although many engineering-oriented companies achieve sev-
eral benefits from the use of configurators, many companies also
experience great difficulties. Unfortunately, the literature provides
detailed descriptions of successful cases only, which does not give
an accurate picture of reality. According to the wide experience of
the authors who have studied numerous configurator projects and
through discussions with people from industry and academia,
many initiated configurator development projects aimed at
complex products and multiple users do not result in the creation
of a configurator that is as widely used by the organisation as
expected. In fact, projects are often abandoned even before the
configurator is completed. On the other hand, it is often the case
that, although a configurator project fails, a project with a similar
focus but a different organisation, scope, or choice of software
succeeds later.

There are two basic challenges to overcome in order to achieve
success in a configurator project. First, the project needs to keep its
momentum until the configurator is developed to a point where it
can be utilized. If a project becomes significantly more costly than
anticipated or the project fails to produce prototypes that indicate
a probability of success, such projects may be abandoned in order
to reduce potential losses. Second, even when a project leads to the
development of a configurator, the configurator still has to be
accepted and used by the organisation. In this context, there are


http://dx.doi.org/10.1016/j.compind.2012.02.001
mailto:adg@sam.sdu.dk
mailto:lhv@man.dtu.dk
mailto:nhmo@mek.dtu.dk
http://www.sciencedirect.com/science/journal/01663615
http://dx.doi.org/10.1016/j.compind.2012.02.001

472 A. Haug et al. /Computers in Industry 63 (2012) 471-481

several challenges such as ensuring that the configurator covers an
adequately large part of the products produced, it can produce
sufficiently extensive outputs, and its precision is satisfactory. If
such demands are not fulfilled, the use of the configurator may
soon be abandoned. This, for instance, implies resources are used
for continuous maintenance of the configurator knowledge base so
that it reflects changes in the product assortment.

There are a number of different ways to carry out the project of
developing a product configurator. The chosen approach will, of
course, impact cost, development time, and the quality of the
configurator. However, in the literature a clear definition of various
ways to carry out the development of a configurator does not exist;
instead, only proposals of specific approaches are provided
without much consideration of alternatives or contexts in which
the specific approach is best suited. Thus, this paper answers two
important questions: (1) what are the different strategies for
developing product configurators? and (2) what are the advan-
tages and drawbacks of choosing one of these strategies? Thus, the
paper provides an improved understanding of configurator
projects for future research and a better basis for companies
engaging in such projects. Although the paper focuses on product
configurators, its contribution may also be relevant in other expert
system development contexts. This, however, is beyond the scope
of this paper.

The remainder of this paper is structured as follows: Section 2
reviews relevant concepts and literature. Based on the discussion
in the previous section and cases studied by the authors, Section 3
defines the different strategies for configurator development.
Section 4 discusses the defined strategies in relation to the effects
of choosing them, and which case characteristics make some
strategies more suitable than others. The paper ends with a
conclusion in Section 5.

2. Literature base

To establish a basis for identifying the different strategies for
the development of product configurators, definitions of some
basic concepts are needed. This section reviews the concepts of
knowledge acquisition and knowledge representation in a
configuration context, followed by a description of different
perspectives on the configurator development process.

2.1. Knowledge acquisition

In order to obtain the many possible benefits of implementing a
configurator in the daily operations of a company, the right
information has to be implemented in the configurator. The
information that forms the basis for the creation of a configurator is
provided by the relevant product experts of a company (i.e., those
who have expertise related to design, engineering, manufacturing,
sales, etc.). The experts responsible for retrieving and formalizing
product expert information into conceptual models are called
‘knowledge engineers’. The process of retrieving information from
product experts and transforming it into representations suitable
for implementation in an expert system is referred to as
‘knowledge acquisition’. Knowledge acquisition is a process by
which (1) the knowledge engineer uses communication techni-
ques to elicit information from relevant experts (knowledge
elicitation), (2) the knowledge engineer interprets this information
to draw conclusions about probable underlying knowledge and
reasoning processes of the product experts, and (3) the knowledge
engineer uses his/her conclusions to direct the construction of a
model and its implementation in an expert system shell or
language [12]. In the 1980s, the development of expert systems
was often seen as a transfer process based on the assumption that
the required knowledge already existed, for which reason the task

of creating an expert system was perceived as the process of
collecting and implementing this knowledge. Today, however,
there is overall consensus that the process of building an expert
system is better perceived as a modelling activity [13-15]. This
modelling view of the knowledge acquisition process has,
according to Studer at al. [14], the following consequences: (1)
models are only approximations of reality and, in principle, the
modelling process is infinite since it is an incessant activity with
the aim of approximating the intended behaviour; (2) the
modelling process has a cyclic course since new observations
may lead to a refinement, modification, or completion of the
already built-up model; and (3) the modelling process is
dependent of the subjective interpretations of the knowledge
engineer, for which reason the process is typically faulty, and
evaluation of the model with respect to reality is indispensable in
order to create an adequate model.

2.2. Knowledge representation

Knowledge representation literature focuses on the use of
symbol systems to represent (simulate) the relevant knowledge of
some domain. Davis et al. [16] argue that the essence of a
knowledge representation can be best understood by the five
distinct roles it plays: (1) a surrogate (a substitute for the thing
itself, used to enable reasoning about the world); (2) a set of
ontological commitments (definition of in which terms the world
should be described); (3) a fragmentary theory of intelligent
reasoning (expressed by three components: a fundamental
conception of intelligent reasoning, a set of inferences sanctioned,
and a set of inferences recommended); (4) a medium for
pragmatically efficient computation (the computational environ-
ment in which thinking is accomplished); and (5) a medium of
human expression (a language for describing aspects of the real
world).

In configurator development projects, two diagramming
techniques are frequently used for the capture and representation
of product information, namely the product variant master (PVM)
technique (sometimes named ‘Product Family Master Plan’) and
class diagrams. PVMs are targeted at representing knowledge
about a product assortment, and they describe classes, their
relationships and properties, and constraints that determine how
classes and properties may be combined. A PVM consists of two
generic sections. The part-of section, placed in the left side of a
PVM, defines the classes that a given product family can comprise.
The kind-of section, placed in the right side of a PVM, describes the
variation of a part, i.e., different types with common character-
istics. In the course of time, different definitions of the PVM
notation have been proposed, most notably by Mortensen et al.
[17],Harlou [18] and Haug [8]. Based on the latter definition, which
represents the most extensive and formalized of these definitions,
a principal example of the PVM technique is seen in Fig. 1. In the
example, the guillemets (<<...>>) indicate that the class ‘Body-
Assembly’ is a class of the type ‘assembly’.

In contrast to PVMs, class diagrams have not been created as a
language aimed at describing product information but, instead, are
created for general software development. A class diagram describes
object classes, their properties, and their relationships. Class
diagrams are part of the UML (Unified Modelling language), which
in version 2.0 consists of thirteen diagram types [19]. Fig. 2 shows a
principal example of a class diagram with some of the most common
elements as if applied in a product analysis context (extended
version of the model in Fig. 1, without pictures). The relationship
types shown in Fig. 2 are generalization (generalization-specializa-
tion structure), composition (whole-part structure in the form of
strong aggregation, which means that the ‘part’ is controlled by the
‘whole’ during all its lifetime), association (classes that are related



Download English Version:

https://daneshyari.com/en/article/509247

Download Persian Version:

https://daneshyari.com/article/509247

Daneshyari.com


https://daneshyari.com/en/article/509247
https://daneshyari.com/article/509247
https://daneshyari.com

