
Journal of Econometrics 201 (2017) 108–126

Contents lists available at ScienceDirect

Journal of Econometrics

journal homepage: www.elsevier.com/locate/jeconom

Nonparametric estimation and inference under shape restrictions
Joel L. Horowitz a,*, Sokbae Lee b,c

a Northwestern University, Evanston, IL 60208, USA
b Institute for Fiscal Studies, London, WC1E 7AE, UK
c Department of Economics, Columbia University, New York, NY 10027, USA

a r t i c l e i n f o

Article history:
Received 16 July 2016
Received in revised form 22 March 2017
Accepted 21 June 2017
Available online 13 July 2017

JEL classification:
C13
C14
C21

Keywords:
Conditional mean function
Constrained estimation
Monotonic
Convex
Slutsky condition

a b s t r a c t

Economic theory often provides shape restrictions on functions of interest in applications, such as
monotonicity, convexity, non-increasing (non-decreasing) returns to scale, or the Slutsky inequality of
consumer theory; but economic theory does not provide finite-dimensional parametric models. This
motivates nonparametric estimation under shape restrictions. Nonparametric estimates are often very
noisy. Shape restrictions stabilize nonparametric estimates without imposing arbitrary restrictions, such
as additivity or a single-index structure, that may be inconsistent with economic theory and the data.
This paper explains how to estimate and obtain an asymptotic uniform confidence band for a conditional
mean function under possibly nonlinear shape restrictions, such as the Slutsky inequality. The results
of Monte Carlo experiments illustrate the finite-sample performance of the method, and an empirical
example illustrates its use in an application.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let Y be a scalar random variable and X be a scalar random vari-
able or vector. This paper presents amethod for nonparametrically
estimating and carrying out inference about the conditional mean
function

g (x) ≡ E (Y |X = x)

under a shape restriction on g such as monotonicity, convexity,
non-increasing (non-decreasing) returns to scale, or the Slutsky
inequality of consumer theory. Economic theory often provides
shape restrictions but does not provide finite-dimensional para-
metric models. For example, cost functions are monotone increas-
ing, concave in input prices, and may exhibit non-increasing or
non-decreasing returns to scale. Demand functions satisfy the Slut-
sky inequality, which is nonlinear. This motivates nonparametric
estimation under shape restrictions. This paper explains how to
estimate and form a uniform confidence band for g under shape
restrictions that are more complicated than monotonicity or con-
vexity and may be nonlinear.

It is well known that g can be estimated consistently and with
the optimal rate of convergence without imposing shape restric-
tions. Fan and Gijbels (1996) and Härdle (1990), among many
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others, describe nonparametric estimation and rates of conver-
gence without shape restrictions. Mammen (1991a, b), Mammen
and Thomas-Agnan (1999), and Wang and Shen (2013) discuss
rates of convergence with shape restrictions. However, fully non-
parametric estimates can be noisy and inconsistent with economic
theory due to random sampling errors. For example, Blundell et
al. (2012, 2017) found fully nonparametric estimates of demand
functions to be wiggly and non-monotonic. Blundell et al. (2012,
2017) also found that imposing the Slutsky restriction reduced
random noise and led to well-behaved nonparametric estimates
without the need for arbitrary and possibly incorrect parametric
or semiparametric assumptions.

Many methods are available for carrying out consistent non-
parametric estimation under shape restrictions. See, for example,
Hall and Huang, 2001, 2002; Hall et al., 2001; Hall and Presnell,
1999; Matzkin, 1994 and the references cited in the foregoing
paragraph. Asymptotic inference is not difficult if the values of x at
which the shape restriction binds or does not bind in the sampled
population are known. Liew (1976) illustrates this in the context
of inequality constrained estimation of a linear model. Du et al.
(2013) carry out kernel nonparametric estimation. In applications,
however, it is not known where in the sampled population the
shape restriction does or does not bind. This greatly complicates
inference, because random sampling errors can cause the shape
restriction to bind or not bind the estimated and true g at different
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values of x. A similar problem arises in inference about a finite-
dimensional parameter that may be on the boundary of the pa-
rameter set (Andrews, 1999). Existing results on inference about
a shape-restricted, nonparametrically estimated conditional mean
function are limited to functions that are assumed to bemonotonic
or convex. The literature on inference under monotonicity or con-
vexity restrictions is vast. See, among many others, Banerjee and
Wellner, 2001; Birke and Dette, 2006; Chernozhukov et al., 2009;
Dette et al., 2006; Dumbgen, 2003; Groeneboom and Jongbloed,
2015; Groeneboom et al., 2001; Pal andWoodroofe, 2007; and the
references therein. Existing results do not treat shape restrictions
such as increasing or decreasing returns to scale and the Slutsky
inequality that are of particular importance in economics. There is
also a large literature on testing the hypothesis that a shape restric-
tion holds. See, for example, Andrews and Shi, 2013; Chernozhukov
et al., 2013; Hall and Yatchew, 2005; Lee et al., 2013; Romano et al.,
2014 and the references therein.

This paper is concernedwith inference under shape restrictions,
such as the Slutsky restriction, that may be nonlinear in a sense
that is defined in Section 5. We formulate the estimation problem
as minimization of a local quadratic objective function subject to
constraints that implement the shape restriction. In general, the
shape restriction generates a continuum of constraints. We reduce
the number of constraints to a finite value by imposing the shape
restriction and estimating g only on a discrete grid of points x in
the support of X . We obtain a confidence band that is uniform
over points in the grid. The grid becomes finer as the sample
size, n, increases, thereby ensuring that, asymptotically, the shape
restriction holds everywhere in the support of X . This enables us
to obtain a confidence band for g that, asymptotically, is uniform
over the support of X and satisfies the shape restriction. In practice,
a confidence band can be computed only on a grid, so there is little
practical difference between a band that is uniformover grid points
and one that is uniform over a continuum.

The use of a discrete grid of points x enables us to overcome
the problem of not knowing which constraints are binding in the
sampled population. Let Sn be the set of constraints that bind in the
population or nearly bind in a sense that is defined in Section 4.
This set is unknown. We find a data-based set Ŝn of ‘‘possibly
binding’’ constraints and carry out estimation under the (possibly
false) assumption that Ŝn = Sn. We show that Ŝn = Sn with
probability approaching 1 as n → ∞. Consequently Sn can be
treated as known asymptotically, and asymptotic inference can be
carried out as if Sn were known and Ŝn = Sn.

Let g0 (x) and ĝ (x), respectively, denote the true conditional
mean function and the shape-restricted nonparametric estimator.
We show that with suitable scaling, ĝ (x)− g0 (x) is asymptotically
jointly normally distributed with mean 0 over grid points. Asymp-
totic normality makes it possible to obtain a confidence band for
g0 that is uniform over grid points. As n → ∞ and the distance
between grid points approaches 0, the uniform confidence band
over grid points converges to a uniform confidence band over all
values of x.

Estimation of g (x) at points x that are not in the grid is unnec-
essary for forming an asymptotic uniform confidence band for g
but may be of interest for other reasons. Estimation of g (xnew) at
a point xnew that is not in the grid can be carried out using the
methods of this paper by shifting the location of the grid so that
xnew is a point of the shifted grid. Alternatively, g (xnew) can be
estimated using any of a variety of methods for interpolating g (x)
between grid points subject to the shape restrictions. The choice
among interpolation methods is arbitrary and, except in special
cases, does not yield an estimator that converges in probability as
rapidly as an estimator based on the shifted grid.

Section 2 outlines the main steps involved in implementing
our method. Section 3 presents the unconstrained and constrained

nonparametric estimators of g and defines the grid. Section 4
describes the method for finding the set Ŝn of possibly binding
constraints. Section 5 explains how to carry out inference about g
and form a uniform confidence band for g under shape restrictions.
The confidence band obtained in Section 5 is uniform over the
support of X and also over a class of functions g that includes
nearly binding constraints. Tominimize notational complexity, the
discussion in Sections 2–5 assumes that X is a scalar random vari-
able. The extension to higher dimensions is outlined in Section 6.
Section 7 presents the results of Monte Carlo experiments and an
empirical example that illustrates the numerical performance of
our methods. Section 8 presents concluding comments. The proofs
of theorems are in the Appendix.

2. A guide to implementation

This section outlines the main steps of our method for estimat-
ing and obtaining a uniform confidence band for g . We assume
here that X is a scalar random variable whose support is [0, 1]. The
extension to a multidimensional X is presented in Section 6.

1. Define a grid 0 < x1 < x2 < · · · < xJ < 1 of J equally
spaced points on (0, 1). A data-based method for choosing J
in applications is presented in Section 7.

2. Estimate g
(
xj
)
(j = 1, . . . , J) nonparametrically by using

local quadratic estimation with bandwidth h. Let g̃
(
xj
)
de-

note the resulting estimate. A method for choosing h in
applications is presented in Section 3.1.

3. Use the estimates g̃
(
xj
)
to find the set Ŝn of possibly binding

shape constraints. Ŝn is given by Eq. (4.6).
4. Re-estimate g

(
xj
)
(j = 1, . . . , J) nonparametrically using

constrained local quadratic estimation under the restriction
that the shape constraints in Ŝn are binding (that is, they are
equalities) and ignoring all other shape constraints.

5. Form a uniform confidence band for g using either the
method of Eqs. (5.8) and (5.9) or the method of Section 5.3.

3. The estimators of g

This section describes our methods for estimating g with and
without shape restrictions. The unrestricted estimator is used
to estimate the set of possibly binding constraints. The shape-
restricted estimator is an extension of the unrestricted estima-
tor. Section 3.1 presents the unrestricted estimator. Section 3.2
presents grid and the shape-restricted estimator.

3.1. The unrestricted estimator

This section presents the unrestricted nonparametric estimator
of g that is used throughout the remainder of this paper. Let
{Yi, Xi : i = 1, . . . , n} denote an independent random sample from
the distribution of (Y , X). Assume for now that X is a scalar random
variable. The extension to a multidimensional X is presented in
Section 6. Also assume that the support of X is a compact interval.
Without further loss of generality, let this interval be [0, 1].

We use local quadratic estimation with bandwidth h ∝ n−1/5

to obtain the unrestricted nonparametric estimator of g . In appli-
cations, the bandwidth can be chosen by using cross-validation
or plug-in methods for local constant or local linear estimation.
Under our assumptions, local quadratic estimation with h ∝ n−1/5

provides an estimator of g that is free of asymptotic bias, and the
bandwidth can be selected by standard methods. Local constant,
local linear, and series estimation methods with a bandwidth
selected by cross-validation or plug-in methods do not have this
property. They require undersmoothing or explicit bias correction
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