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a b s t r a c t

This paper reviews the recent developments in nonparametric identification of measurement error mod-
els and their applications in applied microeconomics, in particular, in empirical industrial organization
and labor economics. Measurement error models describe mappings from a latent distribution to an
observed distribution. The identification and estimation of measurement error models focus on how to
obtain the latent distribution and the measurement error distribution from the observed distribution.
Such a framework is suitable for many microeconomic models with latent variables, such as models with
unobserved heterogeneity or unobserved state variables and panel data models with fixed effects. Recent
developments in measurement error models allow very flexible specification of the latent distribution
and the measurement error distribution. These developments greatly broaden economic applications of
measurement error models. This paper provides an accessible introduction of these technical results to
empirical researchers so as to expand applications of measurement error models.

© 2017 Elsevier B.V. All rights reserved.

✩ This paper was previously circulated under the title ‘‘Microeconomic models with latent variables: Applications of measurement error models in empirical industrial
organization and labor economics’’.

E-mail address: yhu@jhu.edu.

http://dx.doi.org/10.1016/j.jeconom.2017.06.002
0304-4076/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.jeconom.2017.06.002
http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jeconom.2017.06.002&domain=pdf
mailto:yhu@jhu.edu
http://dx.doi.org/10.1016/j.jeconom.2017.06.002


Y. Hu / Journal of Econometrics 200 (2017) 154–168 155

Incomplete information game
Belief
Learning model
Fixed effects
Panel data model
Cognitive and non-cognitive skills
Matching
Income dynamics

1. Introduction

This paper provides a concise introduction of recent develop-
ments in nonparametric identification of measurement error
models and intends to invite empirical researchers to use these
new results formeasurement errormodels in the identification and
estimation of microeconomic models with latent variables.

Measurement error models describe the relationship between
latent variables, which are not observed in the data, and their
measurements. Researchers only observe the measurements in-
stead of the latent variables in the data. The goal is to identify
the distribution of the latent variables and also the distribution
of the measurement errors, which are defined as the difference
between the latent variables and their measurements. In general,
the parameter of interest is the joint distribution of the latent vari-
ables and their measurements, which can be used to describe the
relationship between observables and unobservables in economic
models.

This paper starts with a general framework, where ‘‘a measure-
ment’’ can be simply an observed variablewith an informative sup-
port. Themeasurement error distribution contains the information
about a mapping from the distribution of the latent variables to
the observed measurements. I organize the technical results by
the number of measurements needed for identification. In the
first example, there are two measurements, which are mutually
independent conditioning on the latent variable.With such limited
information, strong restrictions onmeasurement errors are needed
to achieve identification in this 2-measurement model. Neverthe-
less, there are still well known useful results in this framework,
such as Kotlarski’s identity.

However, when a 0–1 dichotomous indicator of the latent vari-
able is available together with two measurements, nonparametric
identification is feasible under a very flexible specification of the
model. I call this a 2.1-measurement model, where I use 0.1 mea-
surement to refer to a 0–1 binary variable. A major breakthrough
in the measurement error literature is that the 2.1-measurement
model can be non-parametrically identified under mild restric-
tions (see Hu, 2008 and Hu and Schennach, 2008). Since it allows
very flexible specifications, the 2.1-measurement model is widely
applicable to microeconomic models with latent variables even
beyond many existing applications.

Given that any observed random variable can be manually
transformed to a 0–1 binary variable, the results for a 2.1-
measurement model can be easily extended to a 3-measurement
model. A 3-measurement model is useful because many dynamic
models involve multiple measurements of a latent variable. A
typical example is the hidden Markov model. Results for the 3-
measurement model show the exchangeable roles which each
measurement may play. In particular, in many cases, it does not
matter which one of the threemeasurements is called a dependent
variable, a proxy, or an instrument.

One may also interpret the identification strategy of the 2.1-
measurement model as a nonparametric instrumental approach.
In that sense, a nonparametric difference-in-differences version of
this strategy may help identify more general dynamic processes
with more measurements. As shown in Hu and Shum (2012), four
measurements or four periods of data are enough to identify a

rather general partially observed first-order Markov process. Such
an identification result is directly applicable to the nonparametric
identification of dynamic models with unobserved state variables.

This paper also provides a brief introduction of empirical ap-
plications using these measurement error models. These studies
cover auction models with unobserved heterogeneity, multiple
equilibria in games, dynamic learning models with latent beliefs,
misreporting errors in estimation of unemployment rates, dynamic
models with unobserved state variables, fixed effects in panel data
models, cognitive and non-cognitive skill formation, two-sided
matching models, and income dynamics. This paper intends to be
concise, informative, and heuristic. I refer to Wansbeek andMeijer
(2000), Bound et al. (2001), Chen et al. (2011), Carroll et al. (2012),
and Schennach (2016) for more complete reviews.

This paper is organized as follows. Section 2 introduces the non-
parametric identification results for measurement error models,
together with a few semiparametric and nonparametric estima-
tors. Section 3 describes a few applications of the nonparametric
identification results. Section 4 summarizes the paper.

2. Nonparametric identification of measurement error models

We start our discussion with a general definition of measure-
ment. Let X denote an observed random variable and X∗ be a latent
random variable of interest. We define a measurement of X∗ as
follows:

Definition 1. A random variable X with support X is called a
measurement of a latent random variable X∗ with support X ∗ if

card (X ) ≥ card
(
X ∗

)
,

where card (X ) stands for the cardinality of set X .

The support condition in Definition 1 implies that there exists
an injective function from X ∗ into X . When X is continuous, the
support condition is not restrictive whether X∗ is discrete or con-
tinuous. When X is discrete, the support condition implies that the
number of possible values of one measurement is larger than or
equal to that of the latent variable. In addition, the possible values
inX ∗ are unknown and usually normalized to be the same as those
of one measurement.

2.1. A general framework

In a random sample, we observe measurement X , while the
variable of interest X∗ is unobserved. The measurement error is
defined as the difference X − X∗. We can identify the distribution
function fX of measurement X directly from the sample, but our
main interest is to identify the distribution of the latent variable
fX∗ , together with the measurement error distribution described
by fX |X∗ . The observed measurement and the latent variable are
associated as follows: for all x ∈ X

fX (x) =

∫
X∗

fX |X∗ (x|x∗)fX∗ (x∗)dx∗, (1)
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