
Journal of Econometrics 200 (2017) 312–325

Contents lists available at ScienceDirect

Journal of Econometrics

journal homepage: www.elsevier.com/locate/jeconom

Semiparametric identification of the bid–ask spread in extended Roll
models
Xiaohong Chen a, Oliver Linton b, Yanping Yi c,*
a Cowles Foundation for Research in Economics, Yale University, PO Box 208281, New Haven, CT 06520-8281, USA
b Department of Economics, University of Cambridge, Austin Robinson Building, Sidgwick Avenue, Cambridge, CB3 9DD, UK
c School of Economics, Shanghai University of Finance and Economics, 777 Guoding Road, Shanghai, 200433, China

a r t i c l e i n f o

Article history:
Available online 28 June 2017

JEL classification:
C12
C13
C14

Keywords:
Bid–ask spread
Roll model
Semiparametric identification
Latent variables

a b s t r a c t

This paper provides new identification results for the bid–ask spread and the nonparametric distribution
of the latent fundamental price increments (εt ) from the observed transaction prices alone. The results
are established via the characteristic function approach, and hence allow for discrete or continuous εt
and the observed price increments do not need to have any finite moments. Constructive identification
(and overidentification) results are established first in the basic Roll (1984) model, and then in various
extended Roll models, including general unbalanced order flow, serially dependent latent trade direction
indicators, adverse selection, random spread and a multivariate Roll model.
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1. Introduction

The (quoted) bid–ask spread of a financial asset is the difference
between the best quoted prices for an immediate purchase and
an immediate sale of that asset. The spread represents a potential
profit for themarketmaker handling the transaction, and is amajor
part of the transaction cost facing investors, especially since the
elimination of commissions and the reduction in exchange fees
that has happened in the last twenty years; see for example Jones
(2002) and Angel et al. (2011). Measuring the bid–ask spread in
practice can be quite time consuming (since it requires reconstruc-
tion of the limit order book) and may be subject to a number of
potential accuracy issues due to the quoting strategies of High
Frequency Traders, for example.

The seminal paper Roll (1984) provides a simple market
microstructure model that allows one to estimate the bid–ask
spread from observed transaction prices alone, without informa-
tion on the underlying bid–ask price quotes and the order flow
(i.e., whether a trade was buyer- or seller-induced). This is partic-
ularly useful for long historical data sets, which are often limited
in their scope. For instance, Hasbrouck (2009) notes that ‘‘inves-
tigations into the role of liquidity and transaction costs in asset
pricing must generally confront the fact that while many asset
pricing tests make use of US equity returns from 1926 onward,
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the high-frequency data used to estimate trading costs are usually
not available prior to 1983. Accordingly, most studies either limit
the sample to the post-1983 period of common coverage or use
the longer historical sample with liquidity proxies estimated from
daily data’’. Another area where the available data is limited is
open-outcrymarkets (like the CME), inwhich bid and ask quotes by
traders expire (if not filled)without recording (see, e.g., Hasbrouck
(2004) for more details).

In the famous Roll (1984) model, an observed (log) asset price
pt evolves according to

pt = p∗

t + It
s0
2
, p∗

t = p∗

t−1 + εt . (1)

∆pt := pt − pt−1 = εt + (It − It−1)
s0
2
, (2)

where p∗
t is the underlying fundamental (log) price with innova-

tions εt , and the trade direction indicators {It} are i.i.d. and take
the values ±1 with probability q0 := Pr(It = 1) = 1/2. It = 1
indicates that the transaction is a purchase, and It = −1 denotes a
sale. The price pt is observed, whereas all other variables in Eq. (1)
are unobserved. The parameter of interest is the effective bid–ask
spread s0.1 Roll (1984) assumes that {εt} is serially uncorrelated
and uncorrelated with the trade direction indicators {It}, and that

1 The bid–ask spread in Eq. (1) is called effective bid–ask spread because it
is based on the effective (average) price pt that is paid to fill an order, and not
necessarily on the quoted bid or ask price, since it might be the case that the order
cannot be filled at the latter price (e.g., due to insufficient depth of the market).
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the one period returns (i.e., the price increments) {∆pt} have finite
second moments. Under these assumptions, s0 is identified in a
closed form as

s0 = 2
√

− Cov (∆pt ,∆pt−1). (3)

Roll (1984) proposes to estimate s0 from (3) by replacing the
theoretical covariance by its empirical counterpart, i.e.,

ŝRoll := 2
√

− Ĉov (∆pt ,∆pt−1). (4)

In practice, this estimator is not satisfactory, since the empirical
first-order autocovariance of price changes is often positive, in
which case (4) is not well-defined. Another problem is that the
nonparametric distribution of the latent true one period returns
(i.e., the latent fundamental price increment), ∆p∗

t = εt , is not
identifiable in the original Roll model.

In a well-known alternative, Hasbrouck (2004) proposes to
strengthen Roll’s modelling assumptions by assuming that {εt} is
i.i.d. with a known parametric distribution, and is independent of
{It}.2 He then uses a Bayesian Gibbs samplingmethodology to esti-
mate the spread parameter subject to a non-negativity constraint.
Specifically, Hasbrouck (2004) assumes that εt ∼ i.i.d.N(0, σ 2

ε ),
where the parameter σε is estimated jointly with the spread s0.
Unfortunately the spread estimator of Hasbrouck (2004) performs
poorly or is not well defined when εt is discrete or continuous
but fat-tailed and/or asymmetric. Basically the spread estimator
of Hasbrouck (2004) is very sensitive to departures from the
assumption that εt ∼ i.i.d.N(0, σ 2

ε ). Moreover, it is difficult to
justify a specific parametric distribution such as Gaussian for the
latent εt .

The more recent empirical finance literature emphasizes sev-
eral additional issues with the Roll model: (a) It assumes balanced
market order flow, i.e., q0 = 1/2, which may be accurate on
average, but may be inaccurate for certain episodes of trading.
(b) It assumes no serial correlation in trade direction indicators,
i.e., It is uncorrelated with It−j for any j ≥ 1. (c) Market orders
are assumed not to bring any news into the fundamental prices
(i.e., no adverse selection), so that It is uncorrelated with ∆p∗

t+j
for j ≥ 0. (d) Spreads are constant within the sample period.
Admitting any one of these effects in the model will lead to the
undesired consequence that the spread estimators of Roll (1984)
and Hasbrouck (2004) become inconsistent (i.e., biased even as
sample size goes to infinity). Furthermore, without additional
model assumptions, or additional observed information (such as
trade volume data in addition to {pt}), it may not be possible to
identify the spread jointly with parameters describing order flow
imbalance or adverse selection, for example. See, e.g., Bleaney and
Li (2015) for a very recent discussion of all the above and additional
problems with the original Roll model.

In this paper we propose new methods for identifying the bid–
ask spread s0 and the unknown distribution of {εt} jointly from the
observed time series transaction prices alone. The observed prices
{pt} could be daily or weekly closing prices, or high-frequency
intra-day prices. Our methods are based on the characteristic
function approach, and hence do not require the existence of any
finite moments of {∆pt}, and allow the latent {εt} to be discrete
or continuous, symmetric or asymmetric. Under the assumption of
strict stationarity of the latent process {εt , It}∞t=1, our identification
results do not require the full independence between {εt} and {It},
and mainly impose some restrictions on the dependence structure
of εt , εt−1, It , It−1 and It−2. Constructive identification results for
s0 and the characteristic function (ϕε) of εt or/and parameters in

2 Hasbrouck (2004) presents an extension that relaxes the independence be-
tween {εt } and {It } assumption but uses additional trade volume data.

various extended Roll models are established based on the joint
characteristic function of consecutive one period returns

ϕ∆p,2(u, u′) := E
[
exp

(
iu∆pt + iu′∆pt−1

)]
for any (u, u′) ∈ R2, (5)

which is nonparametrically identified from the observed price
increment time series {∆pt}.

We first provide a closed-form solution of (s0, ϕε) in the ba-
sic Roll (1984)model under amild sub-independence assumption,
which is only slightly stronger than the uncorrelatedness condition
in Roll (1984) but is much weaker than the full independence
between {εt} and {It} assumption in Hasbrouck (2004). In addition,
we do not impose finite second moment of ∆pt as in Roll (1984)
and Gaussian error of εt as in Hasbrouck (2004). We then propose
solutions to the four problems (a)–(d) with the Roll model listed
above. We show how to identify (s0, ϕε) and other parameters
associated with unbalanced order flow and/or general asymmetric
supported {It}, or those for serially correlated {It}, or those cap-
turing adverse selection effects, or the random spread. We also
extend the basic Roll model to the multivariate case and derive
the identification results. Again, all these are accomplishedwithout
requiring additional data.

In principle, both the basic Roll (1984) model and the various
extended Roll models could fit into the vast measurement error
literature (see, e.g., Li and Vuong, 1998; Carroll et al., 2006; Hu,
2008; Hu and Schennach, 2008; Chen et al., 2011; Evdokimov and
White, 2012; Bonhomme et al., 2016; Hu, forthcoming, and the
references therein). However, to the best of our knowledge, our
identification results are not direct consequences of any existing
published results. This is because the Roll model and its various
extensions contain some special structures, and our identification
results utilize these special features and are constructive under
conditions reasonable for financial applications.

Our constructive identification results for (s0, ϕε) or/and pa-
rameters in extended Roll models are derived under conditions
much weaker than those in the existing literature and more real-
istic for financial applications when {pt} is the only information
available. All our identification results are essentially based on
solving the unknown model parameters by matching the non-
parametrically identified characteristic function ϕ∆p,2(u, u′) to its
model-implied semiparametric counterpart. This approach actu-
ally leads to Hansen (1982) style overidentification.3 Therefore,
one could easily compute consistent estimators of s0, the distribu-
tion of εt or/and other model parameters via minimum distance
procedures based on empirical characteristic functions. And the
overidentification restrictions allow for model specification tests.
As a natural follow-up to this identification paper, Chen et al.
(2017) studies in detail the estimation and testing aspects of these
models and presents an interesting empirical application. In par-
ticular, based on our constructive identification results, Chen et al.
(2017) provides simple sample analog estimation of the spread s0,
the characteristic function of εt or/and other parameters in vari-
ous extended Roll models (such as order flow imbalance, adverse
selections). In the simulation studies, their sample analog spread
estimator does not suffer the pitfalls of the spread estimators
of Roll (1984) and Hasbrouck (2004).

The rest of the paper is organized as follows: Section 2 presents
the basic Roll model and identification of both the spread s0 and
the characteristic function of εt in closed form, allowing for {∆pt}
to have infinite first absolute moments. Section 3 considers exten-
sions to models that allow for unbalanced order flow and more
general asymmetric supported {It}. Section 4 studies identification

3 See Chen and Santos (2015) for a notion of overidentification in semiparametric
and nonparametric models.
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