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a b s t r a c t

Many modern estimation methods in econometrics approximate an objective function, for instance,
through simulation or discretization. These approximations typically affect both bias and variance of the
resulting estimator. We first provide a higher-order expansion of such ‘‘approximate’’ estimators that
takes into account the errors due to the use of approximations. We show how a Newton–Raphson ad-
justment can reduce the impact of approximations. Then we use our expansions to develop inferential
tools that take into account approximation errors: we propose adjustments of the approximate estimator
that remove its first-order bias and adjust its standard errors. These corrections apply to a class of ap-
proximate estimators that includes all known simulation-based procedures. A Monte Carlo simulation on
the mixed logit model shows that our proposed adjustments can yield significant improvements at a low
computational cost.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The complexity of econometric models has grown steadily over
the past three decades. The increase in computer power con-
tributed to this development in various ways, and in particu-
lar by allowing econometricians to estimate more complicated
models using methods that rely on approximations. Examples in-
clude simulated method of moments (McFadden, 1989; Pakes and
Pollard, 1989; Duffie and Singleton, 1993; Creel and Kristensen,
2012), simulated maximum likelihood (Lee, 1992, 1995; Ferma-
nian and Salanié, 2004; Kristensen and Shin, 2012), and approx-
imate solutions to structural models (Rust, 1987; Tauchen and
Hussey, 1991; Fernández-Villaverde and Rubio-Ramirez, 2005;
Fernández-Villaverde et al., 2006; Norets, 2012; Kristensen and
Schjerning, 2015). In all of these cases, the objective function defin-
ing the estimator includes a component which is approximated
using some type of numerical algorithm. We will refer to this
component as the approximator, and call the resulting estimator
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an approximate estimator. Taking the approximation error to zero
defines an infeasible estimator which we call the exact estimator.
In simulation-based inference, for instance, the exact estimator
would be obtained with an infinite number of simulations. In dy-
namic programming models solved by discretization the exact es-
timator would rely on an infinitely fine grid.

The use of approximations usually deteriorates the properties of
the approximate estimator relative to those of the corresponding
exact estimator: the former may suffer from additional biases
and/or variances compared to the latter. When the approximation
error is non-stochastic, its main effect is to impart additional bias
to the estimator. On the other hand, stochastic approximations
not only create bias; they may also reduce efficiency. The effect
of the approximation on the estimator can usually be reduced by
choosing a sufficiently fine approximation; but this comes at the
cost of increased computation time. In many applications this may
be a seriously limiting factor; increased computer power helps, but
it also motivates researchers to work on more complex models.
It is therefore important to quantify the additional estimation
errors that approximators generate, and also to account for these
additional errors in order to draw correct inference.

As a first step in this direction, we analyze the higher-order
properties of the approximate estimator in a general setting. These
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expansions apply to a very large class of models, and can be used
to develop a number of adjustments to estimators and/or standard
errors that open the way to better inference. To show this, we de-
velop analytical bias and variance adjustments for a large class of
approximate estimatorswhere the approximation is stochastic, in-
cluding most standard simulation-based estimators. We also pro-
pose a very generally applicable two-stepmethod; it consists of up-
dating the approximate estimator obtained by one or several New-
ton–Raphson iterations based on the same objective function, but
with a much finer degree of approximation. These different meth-
ods can of course be combined when they both apply.

Our theoretical results apply to generalized method of moment
estimators as well as M-estimators, both when the approximation
is stochastic and when it is not. The results encompass and
extend results in the literature on simulation-based estimators.
Moreover, the expansion can be used to analyze the behavior of
estimators that rely on numerical solutions to structural dynamic
models as cited above. Our results also apply to many estimators
used in empirical IO, which combine simulation and numerical
approximation. And it also covers situations where numerical
derivatives are used, either for computation of variance estimators
or optimization algorithms based on Newton iterations1. To the
best of our knowledge, this is the first paper to provide results for
such a general class of models.

To test the practical performance of our proposed adjustment
methods, we run a simulation study on a mixed logit model. The
mixed logit is one of the basic building blocks inmuchwork on de-
mand analysis, for example; and it is simple enough that we can
compute the true value of the biases and efficiency losses, as well
as our estimated corrections. We show that uncorrected SML has
non-negligible bias, even for large sample sizes; and that standard
confidence intervals can be wildly off the mark. Our analytical ad-
justment removes most of the bias at almost no additional compu-
tational cost; and it yields very reliable confidence intervals. The
Newton–Raphson correction also reduces the bias and improves
confidence intervals, but it does so less effectively than the analyt-
ical adjustment.

In a recent paper, Freyberger (2015) derived analytical adjust-
ments for the Berry–Levinsohn–Pakes (1995) model when the
numbers of consumers and/or the number of simulation draws are
finite. His approach is similar to ours: his results are less general,
but since he only deals with a specific model his assumptions are
more primitive and his formulæmore explicit.We complement his
work by providing the formulæ for our Newton–Raphson adjust-
ment for this model in Section 6.2.

The paper is organized as follows. Section 2 presents our frame-
work and some examples. In Section 3, we derive a higher-order
expansion of the approximate estimator relative to the exact one.
We describe our Newton–Raphson correction in Section 4. Then in
Section 5 we build on the expansion to propose adjusted estima-
tors, standard errors, and confidence intervals. Section 6 applies
the general theory to two specific approximate estimators, while
Section 7 presents the results of a Monte Carlo simulation study
using the simulated MLE of the mixed logit model as an example.
We discuss possible extensions of our results in Section 8. Appen-
dices A and B contain proofs of the main results and lemmas, re-
spectively. Appendix C provides details for two examples of our
theory, and Appendix D outlines how the theory can be general-
ized to handle multiple approximators with different properties.

1 However, in most of our examples, we abstract away from issues with
numerical maximization that sometimes arise when computing extremum
estimators.

2. Framework

Given a sample Zn = {z1, . . . , zn} of n observations, our aim
is to estimate a parameter θ0 ∈ Θ ⊆ Rk through an estimating
equation that the ‘‘exact’’ estimator θ̂n is set to solve,

Gn(θ̂n, γ0) = oP

1/

√
n

,where

Gn (θ, γ ) =
1
n

n
i=1

g (zi; θ, γ ) ,
(1)

and g (z; θ, γ ) is a known functional that depends on data, z, the
parameter of interest, θ , and a nuisance parameter γ . We here and
in the following let γ0 denote the true, but unknown value of γ .
The nuisance parameter γ could be finite-dimensional, but inmost
situations it is a parameter dependent function, u → γ (u; θ).
The nature of the argument u of the function γ will depend on the
application; it could be covariates relative to one observation, the
value of a conditional moment, or more complex objects. This is
irrelevant for our general theory.

Suppose that the object γ0 is not known in closed form to
the econometrician, so that the estimator θ̂ is infeasible. Instead,
we approximate γ0 by γ̂S that depends on some approximation
scheme of order S (e.g. S simulations, or a discretization on a grid of
size S), and compute the corresponding ‘‘approximate’’ estimator
θ̂n,S satisfying

Gn(θ̂n,S, γ̂S) = oP

1/

√
n

. (2)

Our first aim is to analyze the impact of approximations: How do
they impact the distribution of θ̂n,S? This analysis is in turn used
to propose methods that reduce the biases and variances due to
approximations, and adjust standard errors to take into account
additional noise due to approximations.

We restrict attention throughout to the case of smooth
approximators where γ̂S(u; θ) is, as a minimum, differentiable
w.r.t. θ . Moreover, while γ may be a vector-valued function,
we will in the main text assume that the biases and variances
due to approximations of its different components vanish at the
same rate. This is merely to save on notation, and Appendix D
provides results for the case of multiple approximators with
possibly different rates.

We now present a few examples that fall within the above
setting:

Example 1 (Approximate M-Estimators). Consider an M-estimator
θ̂ = argmaxθ∈Θ Qn(θ, γ0), where Qn(θ, γ ) =

n
i=1 q (zi; θ, γ ) /n.

In this case, we set g (z; θ, γ ) = ∂q (z; θ, γ ) / (∂θ). This
covers simulated maximum likelihood estimator (SMLE) where
q (z; θ, γ ) = log γ (z; θ) and γ0 is a density that is computed
by simulations. It also includes simulated pseudo-maximum
likelihood (Laroque and Salanié, 1989) where q (z, γ ; θ) =

− (y − γ (x; θ))2 and γ0 (x; θ) = E [y|x; θ ] is a conditional
moment which is computed by simulations.

Example 2 (Approximate GMM-Estimators). Suppose that θ̂ is de-
fined as in Example 1, but now Qn(θ, γ ) = Mn(θ, γ )

′WnMn(θ, γ )
where Mn(θ, γ ) =

n
i=1 m (zi, γ ; θ) /n is a set of sample

moments and Wn
P

→W > 0. Then we set g (zi; θ, γ ) =

H(θ, γ )Wm (zi; θ, γ ) where H(θ, γ ) = E[∂m (zi; θ, γ ) / (∂θ)].
This includes simulated method of moments (SMM), where
m (z, γ ; θ) = m (y) − γ (x; θ) and γ (x; θ) = E [m (y) |x; θ ], and
indirect inference (Gouriéroux and Monfort, 1996) where the esti-
mator of the auxiliary model’s parameters, β , can be expressed as
β̂ = β (θ0) +

n
i=1 m (zi) /n + oP


n−1/2


and γ (θ) = E[β̂|θ ] =

β (θ)+ E [m (zi) |θ ] + o

n−1/2


.
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