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a b s t r a c t

It is commonly argued that observed longmemory in time series variables can result from cross-sectional
aggregation of dynamic heterogeneous micro units. In this paper we demonstrate that the aggregation
argument is consistent with a range of different long memory definitions. A simulation study shows
that the cross-section dimension needs to be rather large to reflect the theoretical memory when using
commonly used methods to estimate the memory parameter, especially when the theoretical memory is
not too high.We show that the aggregated process will converge to a generalized fractional process in the
limit. The coefficients of the moving average representation of the series decay hyperbolically but they
differ from the coefficients arising from inversion of the fractional difference filter. It appears that the
fractionally differenced series will have an autocorrelation function that still exhibits hyperbolic decay,
but at a rate that ensures summability. The fractionally differenced series is thus I(0) but standard ARFIMA
modeling is invalid when the long memory is caused by aggregation. It is shown that standard methods
for estimating and selecting ARFIMA specifications fail in properly fitting the dynamics of the series.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Without specifically discussing long memory, the study of this
concept in econometrics goes back to Granger (1966) in his ar-
ticle about the spectral shape near the origin for economic time
series variables. He found that long-term fluctuations, if decom-
posed into frequency components, are such that the amplitudes of
the components decrease smoothly with decreasing period (Granger,
1966, p. 155). This certainly applies for non-stationary I(1) pro-
cesses and more generally for the class of fractionally integrated
processes as demonstrated by Granger and Joyeux (1980). Such
processes have long lasting autocorrelations that decay hyperboli-
cally instead of the standard geometric decay characterizing ARMA
processes.

This kind of behavior has led to several definitions of long
memory. In this paperwe consider five definitions of longmemory.

Definition. Let xt be a stationary time series with autocovariance
function γx(k) and spectral density function fx(λ), and let d ∈

(0, 1/2), then xt has long memory

(i) in the covariance sense if γx(k) ≈ Cxk2d−1 as k → ∞ with Cx
a constant,
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(ii) in the spectral sense if fx(λ) ≈ Cf λ
−2d as λ → 0 with Cf a

constant,
(iii) in the rate of the partial sum sense if Var(

T
t=1 xt) =

Op(T 1+2d),
(iv) in the self-similar sense ifm1−2dCov(x(m)

t , x(m)
t+k) ≈ Cmk2d−1 as

k,m → ∞ where x(m)
t =

1
m (xtm−m+1 +· · ·+ xtm) withm ∈ N,

m/k → 0, and Cm is a constant,
(v) in the weak convergence sense if Xn(ξ) = σ−1

n
⌊nξ⌋

t=1 xt ⇒

BH(ξ), where σ 2
n = E[(

n
t=1 xt)

2
], ξ ∈ [0, 1], BH(ξ) is a frac-

tional Brownian motion, H = d + 1/2, and ⇒ denotes weak
convergence onD[0, 1], the space of real-valued functions that
are continuous from the right with finite left limits.

Above, g(x) ≈ h(x) as x → x0 means that g(x)/h(x) converges to 1
as x tends to x0, Op(·) denotes order in probability, and ⌊·⌋ denotes
the integer value of its argument.

Definition (i) is concerned with the behavior of the autocorre-
lation function for long lags and was one of the motivations be-
hind the ARFIMA class of models due to Adenstedt (1974), Granger
and Joyeux (1980), and Hosking (1981). Basically, they extended
the ARMA model to account for fractional differencing. That is, for
a stationary fractional process

A(L)(1 − L)dxt = B(L)ϵt , (1)

where ϵt is a white noise process, d ∈ (−1/2, 1/2), and A(L),
B(L) are polynomials in the lag operator with no common roots, all
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outside the unit circle. They used the standard binomial expansion
to decompose (1 − L)d in a series with coefficients πj = Γ (j +

d)/(Γ (d)Γ (j + 1)) for j ∈ N. Using Stirling’s approximation it
can be shown that these coefficients decay at a hyperbolic rate
(πj ≈ jd−1 as j → ∞), which translates to slowly decaying
autocorrelations.

Definition (ii) is the feature considered by Granger (1966) in
his study of the typical spectral shape for economic variables.
The behavior of the spectrum near the origin is also used in
the construction of one of the most popular estimators for long
memory due to Geweke and Porter Hudak (1983)who proposed an
estimation procedure based on semiparametric log periodogram
regression near the zero frequency.

Diebold and Inoue (2001) based their work on spurious long
memory on definition (iii). They showed that structural breaks
or regime switching schemes can be confused with long memory
of the fractional type by focusing on the stochastic order of the
variance of partial sums. Their paper demonstrates that certain
stochastic processes are long memory by one definition but not
necessarily by other definitions.

Definitions (iv) and (v) are largely based on the work of Man-
delbrot and Van Ness (1968) for fractals. They defined the self-
similarity condition and showed that the fractional Brownian
motion in particular has this property. Basically, self-similarity im-
plies that the degree of memory is constant for different levels of
temporal aggregation. Weak convergence to a fractional Brown-
ian motion of an appropriately scaled partial sum is important for
many parametric long memory models, but the class of processes
is broader than often being considered as we shall later see.

It is well known that ARFIMA processes are long memory by
definitions (i) through (ii), and an analogous derivation as in the
proof of Theorem 1 shows that it is also long memory in the self-
similar sense, definition (iv). Moreover, a scaled partial sum of an
ARFIMA process converges to fractional Brownian motion, see for
instance Davydov (1970) and Davidson and de Jong (2000). Thus,
in the time series literature the ARFIMA model has become the
canonical specification for modeling long memory.

Even though the ARFIMA model seems to be an appropriate
specification to study long memory, the source underlying its
dynamic features is still not clear. Physical (turbulence, see for
instance Kolmogorov (1941)), as well as psychological reasons
(Pearson (1902) personal equation), have been used to explain the
presence of long memory. More recently, Parke (1999) proposed
the error-duration model which relies on a decomposition of the
time series into the sum of a sequence of shocks of stochastic
magnitude and duration. He shows that if only a small proportion
of the errors survive for large periods of time then the resulting
series shows long memory in the covariance sense, definition (i).
Nonetheless, given the nature in which the data is collected, one of
the main arguments often given in economics to why time series
data seems to have long memory features is due to cross-sectional
aggregation. It is also commonplace to see arguments for cross-
sectional aggregation motivating the presence of fractional long
memory in real data.

Granger (1980), in line with the results of Robinson (1978) on
random AR(1) models, showed that cross-sectional aggregation
of AR(1) processes with random coefficients could produce long
memory. Assuming a Beta distribution for the generation of cross-
sectional AR(1) coefficients, he showed that, as the cross-sectional
dimension goes to infinity, the autocovariance function exhibits a
slow hyperbolic decay, rather than the standard geometric decay
characterizing ARMA processes. Thus, cross-sectional aggregation
of dynamicmicro units can produce longmemory in the covariance
sense under certain conditions.

In this paper we focus on some features of the aggregation
argument leading to long memory. We address the particular

specification considered by Granger because the Beta distribution
is a rather flexible specification that allows closed-form solutions
but the analysis can be extended to other aggregation schemes
as well. Zaffaroni (2004) shows that Granger’s result applies to
a broader class of distributions to which the Beta distribution
belongs. We demonstrate that this aggregation scheme implies
that the aggregated series is long memory using all the definitions
considered in this paper.

Since the aggregation result is an asymptotic property we con-
duct a Monte Carlo simulation study to quantify how aggregation
can lead to long memory in finite samples. The theoretical degree
of memory of the aggregated series is tied to a particular parame-
ter of the Beta distribution which affects the density mass around
one. The simulations show that the cross-sectional dimension has
to be rather large for the theoretical degree of memory to apply,
while the time series dimension needs to be large to obtain a pre-
cise estimator. Finite samples of the series will still exhibit long
memory but the estimated memory parameter can be rather large
compared to its theoretical value, especially when the memory is
only of moderate degree.

In the third part of the paper, we focus on the extent to which
the memory implied by aggregation can be removed by frac-
tional differencing. In particular, we are interested in how ARFIMA
type of long memory models can be useful for practical model
building for the class of processes considered. It occurs that frac-
tionally differencing the series, using the theoretical degree of
memory, does remove the long memory of the process. The result-
ing series has absolutely summable autocorrelations and thus it is
I(0) by the definition of Davidson (2009). However, the fraction-
ally differenced series will still have autocorrelations that decay
hyperbolically and hence will decay slower than what an ARMA
specificationwill be able to fit. This feature ismost dominantwhen
the degree of memory is moderate as opposed to being close to
non-stationarity. Our findings have implications for the argument
that is often given for estimating ARFIMA models in applications,
namely that the observed long memory of time series can occur
due to cross-sectional aggregation. A simulation study shows that
fitted ARFIMA models will generally be inadequate to fit the dy-
namics of the underlying process.

The paper is structured as follows. In Section 2, the Granger
aggregation scheme is presented and the features of the aggregated
series are examined using the different long memory definitions
that we consider. Section 3 presents the simulation study, and
Section 4 derives the features of fractional differencing of cross-
sectionally aggregated long memory processes. Finally, Section 5
concludes.

2. Long memory and cross-sectional aggregation

Consider the random AR(1) process given by:

xi,t = αixi,t−1 + εi,t , (2)

where εi,t is a white noise process independent of αi with E[ε2
i,t ] =

σ 2
ε , ∀t ∈ Z and α2

i ∼ B(α; p, q) with p, q > 1 and B(α; p, q) is
the Beta distribution with density:

B(α; p, q) =
1

B(p, q)
αp−1(1 − α)q−1 for α ∈ (0, 1), (3)

where B(·, ·) is the Beta function.
Robinson (1978) showed that the process given by (2)

admits a variance–covariance stationary solution. Furthermore,
the unconditional autocorrelation function of this process shows
hyperbolic decay. However, the process is not ergodic in the sense
that random samples will depend on the realization of αi.
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