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a b s t r a c t

The general principles underlying tests of matrix rank are investigated. It is demonstrated that statistics
for such tests can be seen as implicit functions of null space estimators. In turn, the asymptotic behaviour
of the null space estimators is shown to determine the asymptotic behaviour of the statistics through
a plug-in principle. The theory simplifies the asymptotics under a variety of alternatives of empirical
relevance as well as misspecification, clarifies the relationships between the various existing tests, makes
use of important results in the numerical analysis literature, and motivates numerous new tests. A brief
Monte Carlo study illustrates the results.
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1. Introduction

The literature on tests of matrix rank has grown into a large
and eminently applicable branch of econometrics since the sem-
inal contribution by Anderson (1951) (see Camba-Mendez and
Kapetanios (2009) for a survey). Much of this progress has taken
place in spite of the difficulty of the asymptotics of these tests; in-
deed, statistics for testing the rank of a matrix often involve eigen-
vectors, inverses, and other discontinuous functions of matrices.
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Consequently, significant gaps have persisted in our knowledge
of the relationships between the various tests in the literature.
Relationships between the Anderson (1951), Johansen (1991),
Robin and Smith (2000), and Kleibergen and Paap (2006) statistics
are known, as are relationships between the Cragg and Donald
(1996, 1997) statistics. However, there is as of yet no character-
ization of the general structure of statistics for testing the rank
of a matrix. Another consequence, is that little is known about
the behaviour of tests of rank under local alternatives or under
misspecification. Local power is considered in Cragg and Donald
(1997) and a handful of papers surveyed by Hubrich et al. (2001),
while misspecification is considered in Robin and Smith (2000),
Caner (1998), Cavaliere et al. (2010b), Aznar and Salvador (2002),
and Cavaliere et al. (2014). All of these results relate to specific
tests and there is as of yet no known general principle that unifies
all of these results. The statistical and econometric literature has
also made little use of the numerical analysis literature, which
has made great strides in understanding and discovering effective
matrix rank (Hansen, 1998).

Thus, the objective of this paper is to investigate the general
principles underlying tests of matrix rank by: (i) characterizing the
general structure of statistics for testingmatrix rank, (ii) describing
the behaviour of these statistics under a variety of alternatives of
empirical relevance and misspecification, and (iii) making use of
important insights from the numerical analysis literature. These
intermediate objectives are achieved along the following steps.
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First, the paper shows that the general structure of statistics for
tests of rank is of the form of an implicit function of estimators
of the null spaces of the matrix in question (see Sections 3.1 and
4.3). This achieves intermediate objective (i) as it is demonstrated
thatmost statistics in the literature have common functional forms
although they may differ in the implicit null space estimators (see
Table 1).

Next, the paper develops the theory of null space estimation
based on reduced-rank approximations, which have been widely
studied in the numerical analysis literature. This achieves interme-
diate objective (iii). Lemmas 1 and 2 provide a full characterization
of the asymptotic properties of null space estimators under the
various alternatives under study. These results generalize Dufour
and Valery (2011) in that they apply to general matrices rather
than just the positive semi-definite ones and are not restricted
to eigenprojections. They also allow us to use any reduced-rank
approximation to construct a statistical test of matrix rank; this
is demonstrated by a number of new tests based on the QR and
Cholesky decompositions (see Section 5).

Finally, it is demonstrated that the behaviour of statistics for
tests of rank is completely governed by the implicit null space
estimators. A plug-in principle is shown to hold, whereby every
statistic mimics the asymptotic behaviour of an infeasible statistic
that plugs in null spaces related to the population value of the
matrix under study. This greatly simplifies the asymptotics of tests
of rank under the various alternatives as well as misspecification.
Under the null hypothesis or the local alternative, one can simply
ignore the fact that the null spaces are estimated and derive the
asymptotics as if the appropriate null spaces were known. Under
the global alternative, the statistic diverges whenever the asso-
ciated infeasible statistic diverges and under certain conditions
(conjectured to be generic) both statistics are proven to diverge
at the same rate. Thus, the plug-in principle allows us to achieve
intermediate objective (ii). It also follows that statistics that have
a common functional form but differ in their null space estimators
are asymptotically equivalent, therefore establishing the asymp-
totic equivalence of a number of tests in the literature. Theorem 2
and Corollaries 3 and 4 are shown to imply the asymptotics of al-
most all tests of rank, with the handful of exceptions demonstrably
satisfying aweaker formof the plug-in principle (see the discussion
in Section 4.3).

It is important to emphasize several distinctive features of the
approach of this paper. First, the approach is Waldian in that the
primitives are taken to be a matrix estimator and a normalizing
matrix; this allows it to encompass a much wider variety of tests
than Reinsel and Velu (1998) and Massmann (2007), which nest
some of the likelihood-based tests but miss a host of other tests.
Second, it is based on orthogonal projection matrices, so that no
identifying restrictions are imposed on the null space estimators;
this allows for an elegant and compact description of their rates of
convergence. Third, it encompasses both standard asymptotics and
cointegration in a way that illuminates the continuity between the
two strands of the literature. In this regard, the paper is developed
gradually from the special case of standard asymptotics to the
general case that allows for cointegration.

It is also important to note two aspects of the plug-in principle
that have been well known in the literature. First, as far back
as Stock and Watson (1988) and as recently as Boswijk et al.
(2015), researchers have relied on the idea that the population
cointegration relationship could be substituting in for a super-
consistent estimator in working out the asymptotics of cointegra-
tion statistics. This paper demonstrates that this idea does not hold
in general (see Example 4) and proposes the necessary modifica-
tions. Second, the proofs of the asymptotics of some tests some-
times involved an implicit use of the plug-in principle (e.g. Cragg
and Donald (1996) and Robin and Smith (2000)). However, these

instances concerned specific rather than generic tests and did not
recognize the plug-in principle as an overarching framework that
elucidates the asymptotics of tests of rank in general.

In terms of practical recommendations for practitioners, the
following results emerge: (i) both theoretical and Monte Carlo
results fail to point to an optimal test of rank, thus researchers can
base their choice of test on other considerations, (ii) test statistics
based on the QR and LU decompositions (e.g. the Cragg andDonald
(1996) statistic) are recommended for high intensity computing
such as the bootstrap as they are numerically less expensive than
the alternatives (see Al-Sadoon (2016) for an illustration), and (iii)
the paper proposes a number of new tests, which include robust
extensions of the likelihood ratio test of Anderson (1951) and the
maximumeigenvalue test of Johansen (1991) aswell as tests based
on the QR and Cholesky decompositions.1

The paper is organized as follows. Section 2 develops the no-
tation of the paper. Section 3 develops the theory under standard
asymptotics. Section 4 develops the theory under non-standard
asymptotics. Section 5 provides Monte Carlo evidence. Section 6
concludes. Further Monte Carlo results and technical material as
well as the proofs of the results can be found in the on-line ap-
pendix to the paper at http://dx.doi.org/10.1016/j.jeconom.2017.
03.002.

2. Notation

Rn×m denotes the set of n × m real valued matrices and Gn×m

is the subset of matrices of full rank. Pm
+

⊂ Pm
⊂ Sm denote

the set of positive definite, positive semi-definite, and symmetric
matrices in Rm×m respectively. vec(B) is the vector formed by ver-
tically stacking the columns of B and vech(B) is the one formed by
vertically stacking the elements below and including the diagonal
elements of B. The mat operator is defined as the inverse to the vec
operator (its rangewill be evident from the context). The Euclidean
norm of B ∈ Rn×m is defined as ∥B∥ = (vec′(B)vec(B))1/2. The
Mahalanobis norm is defined as ∥B∥Θ = (vec′(B)Θ−1vec(B))1/2 for
Θ ∈ Pnm

+
. The 2-norm is defined as ∥B∥2 = maxx∈Rm,∥x∥=1∥Bx∥.

If P ⊂ Rn×m, define d(B,P) = infX∈P∥B − X∥. The singular
values of B are denoted by σ1(B) ≥ σ2(B) ≥ · · · ≥ σmin{n,m}(B).
The condition number of B is defined as cond(B) = σ1(B)/σr (B),
where r = rank(B). The Moore–Penrose inverse of B is denoted by
B†. For any B ∈ Gn×m with n > m, an orthogonal complement
B⊥ is any matrix in Gn×(n−m) satisfying B′

⊥
B = 0. The column

space of B is denoted by span(B). The orthogonal projection onto
span(B) is denoted by PB. The duplicationmatrixDm is themapping
vech(B) ↦→ vec(B) over B ∈ Sm. For B ∈ Pm, B1/2 is the positive
semi-definite square root matrix and B†/2

= (B1/2)† = (B†)1/2.
Finally, we say that a sequence of random matrices XT ∈ Rn×m

indexed by T is bounded away from zero in probability and denote
this by X = O−1

p (1) if for all ε > 0, there exist a δε > 0 and a
Tε ≥ 0 such that the probability that ∥XT∥ > δε is at least 1− ε for
all T ≥ Tε . It is easy to show that ∥XT∥

−1
= O−1

p (1) if and only if
XT = Op(1) and XT = O−1

p (1) if and only if ∥XT∥
−1

= Op(1). Hence
the notation, O−1

p (1). The product of two O−1
p (1) sequences is again

O−1
p (1) and aT∥XT∥

p
→ ∞ for any non-random sequence aT → ∞.

The deterministic version, O−1(1), is defined similarly.

3. Tests of rank under standard asymptotics

This section lays the foundations of our study. First, the general
structure of statistics for tests of rank is considered. It is shown

1 Practitioners may also wish to consult the Matlab tutorial accompanying this
paper, tutorial.m, which is included in the compressed file, rank.rar, available
on the author’s website.
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