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a b s t r a c t

This paper provides identification results for a class of models specified by a triangular system of
two equations with binary endogenous variables. The joint distribution of the latent error terms is
specified through a parametric copula structure that satisfies a particular dependence ordering, while the
marginal distributions are allowed to be arbitrary but known. This class of models is broad and includes
bivariate probit models as a special case. The paper demonstrates that having an exclusion restriction
is necessary and sufficient for global identification in a model without common exogenous covariates,
where the excluded variable is allowed to be binary. Having an exclusion restriction is sufficient inmodels
with common exogenous covariates that are present in both equations. The paper then extends the
identification analyses to a model where the marginal distributions of the error terms are unknown.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

This paper examines the identification of a class of bivariate
threshold crossing models that nests bivariate probit models as a
special case. The bivariate probit model was introduced in Heck-
man (1978) as one specification of simultaneous equationsmodels
for latent variables, and is commonly used in applied studies,
such as Evans and Schwab (1995), Neal (1997), Goldman et al.
(2001), Altonji et al. (2005), Bhattacharya et al. (2006), and Rhine
et al. (2006), to name a few. Although the model has drawn much
attention in the literature, relatively little research has been done
to analyze the identification even in this restricted model.1

There are three papers in the literature that have studied
identification of bivariate probit models: Freedman and Sekhon
(2010), Wilde (2000), and Meango andMourifié (2014). Freedman
and Sekhon (2010) provide formal identification results for bivari-
ate probit models, though they assume (and their proof strategy
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1 Heckman (1978) discusses identification via a maximum likelihood estimation

framework in a model where one of the latent dependent variables is observed in
the simultaneous equations model. In a framework where both are not observed,
however, identification analysis through calculating the second derivative of a
maximum likelihood criterion function is problematic since it is analytically hard
to solve.

critically relies upon the assumption) that one of the exogenous
regressors has large support. The large support condition is restric-
tive and limits the applicability of their analysis. Wilde (2000)
also considers the identification of bivariate probit models. His
identification analysis is limited to simply counting the number of
unknown parameters and number of informative non-redundant
probabilities in the likelihood function, i.e., the number of equa-
tions. His analysis only establishes a necessary condition for global
identification since there may still exist multiple solutions in a
system of nonlinear equations where the number of equations is
at least as large as the number of unknown parameters. In fact,
Meango and Mourifié (2014) show that, using as many equations
as the number of parameters, there can be multiple solutions in a
bivariate probit model where there are common binary exogenous
regressors but no excluded instruments.2

In this paper, we derive identification results for a class of
models specified by a triangular system of two equations with
binary endogenous variables, where we generalize the bivariate
normality assumptionon the latent error termsof a bivariate probit
model through the use of copulas. In particular, instead of requiring
that the joint distribution of latent error terms be bivariate normal,
we allow the marginal distributions to be arbitrary but known,

2 Building upon Meango and Mourifié (2014) and the present paper, Han and
Lee (2017) show that the solution is not unique even when exploiting the full set
of equations implied by the model. These results demonstrate that Wilde’s (2000)
counting exercise is not sufficient for identification analysis.
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while restricting their dependence structure by imposing that their
copula function belongs to a broad class of parametric copulas that
includes the normal copula as a special case. We then extend the
results to a model where the marginal distributions are unknown.
All results derived in this paper also apply to the special parametric
case of bivariate probit models.

We first provide identification results in a model without com-
mon exogenous regressors, showing that, in such a model, having
a valid exclusion restriction (i.e., instrument) is necessary and
sufficient for global identification of the model. Unlike Freedman
and Sekhon (2010), this result does not require a full support
condition, and holds even if the instrument is binary. While Wilde
(2000) restricts his analysis to bivariate probit models, we show
that a bivariate normal distribution is not necessary for our identi-
fication strategy to work as long as a certain dependence structure
is maintained. We extend the result to allow for the possibility
of exogenous covariates that enter both equations and the pos-
sibility of instruments Z being vector valued without requiring
any element of Z to be binary. Having an exclusion restriction is
sufficient for identification in this context.3 In this full model,
we also provide identification results without assuming that the
marginal distributions of the error terms are known. The structural
parameters are shown to be identified under similar conditions
as in the known-marginal case and the marginal distributions
are shown to be additionally identified under a stronger support
condition.

Wemake use of copulas to characterize the joint distribution of
the latent error terms, which allows us to separate the error terms’
dependence structure from their marginal distributions. Our anal-
ysis shows that identification is obtained through a condition on
the copula, with the shape of the marginal distributions playing
no role in the analysis. The condition we impose on the copula is
that it satisfies a particular dependence ordering with respect to
a single dependence parameter. Specifically, the condition is that
the copula is ordered by a dependence parameter that is infor-
mative about the degree of dependence in the sense of the first-
order stochastic dominance ‘‘FOSD’’. We show that this condition
is satisfied by a broad range of single-parameter copulas including
the normal copula. Thus, the assumption used in the literature that
the latent variables follow a bivariate normal distribution is not
critical in deriving identification results in this type of models.4
We also introduce a novel dependence ordering concept that
characterizes minimal structure on the copula that is required for
our identification results. This ordering is more general than the
FOSD ordering but slightly less interpretable.

Our use of copulas is related to Lee (1983), who uses a normal
copula to generalize normal selection models. Chiburis (2010) is
also related to our analysis. He introduces a normal copula to char-
acterize the joint distribution of latent variables in a similar setting
as in this paper, although no rigorous identification analysis is
conducted for our class of models. To facilitate their inference pro-
cedure in a censored linear quantile regression model, Fan and Liu
(2015) introduce one-parameter ordered families of Archimedean
copulas in characterizing dependence between the dependent
variable and censoring variable, but the ordering concept which
defines their class of copulas differs from ours. Copulas have also
been used tomodel the joint distributions of error terms in switch-
ing regime models (Fan and Wu, 2010) or the joint distribution of

3 As mentioned, the results of Meango and Mourifié (2014) and Han and Lee
(2017) show that an exclusion restriction is also necessary for identification when
the common exogenous covariates are binary.
4 This contrasts with the identification result in a model related to ours, i.e., the

sample selection model by Heckman (1979), where identification can be achieved
solely by the functional form of the joint normal errors as long as there are
common exogenous covariates. Excluded instruments only become necessary for
identification in that model once the normality assumption is relaxed, which is not
the case in our model.

potential outcomes in randomized experiment settings (Fan and
Park, 2010), where bounds on the distribution of treatment effects
are derived. There are also recent papers that generalize a bivariate
probitmodel using a copula structure (Winkelmann, 2012) or using
nonparametric index functions instead of linear functions (Marra
and Radice, 2011), or both (Radice et al., 2015), but all of these
papers rely on the counting exercise for identification analysis.

The paper is organized as follows. In Section 2, we introduce
the model and preliminary assumptions. Section 3 introduces de-
pendence orderings and related concepts that are used to define
the class of models we analyze. Section 4 shows identification of a
simple, special case of our model, which is useful for subsequent
analyses. Section 5 extends the identification analysis to the full
model. Section 6 extends the results of the previous section to the
case of nonparametric marginal distributions. Section 7 concludes
with discussions on estimation and inference.

2. The model

Let Y denote the binary outcome variable andD the observed bi-
nary endogenous treatment variable. Let X

(k+1)×1
≡ (1, X1, . . . , Xk)′

denote the vector of regressors that determine both Y and D, and
let Z

l×1
≡ (Z1, . . . , Zl)′ denote a vector of regressors that directly

affects D but not Y (variables excluded from the model for Y ,
i.e., instruments for D). We consider a bivariate triangular system
for (Y ,D):

Y = 1[X ′β + δ1D − ε ≥ 0],
D = 1[X ′α + Z ′γ − ν ≥ 0], (2.1)

where α ≡ (α0, α1, . . . , αk)′, β ≡ (β0, β1, . . . , βk)′, and γ ≡

(γ1, γ2, . . . , γl)′. As an example of this model, Y might be an
employment status or voting decision, D an indicator for having
a bachelor degree, and Z college tuition. As another example, Y
could be an indicator for patient death, D a medical treatment, and
Z some randomization scheme. In these examples, X represents
other individual characteristics.

We will maintain the following assumptions.

Assumption 1. (X, Z) ⊥ (ε, ν), where ‘‘⊥’’ denotes statistical
independence.

Assumption 2. Fε and Fν are known marginal distributions of ε
and ν, respectively, that are strictly increasing, are absolutely con-
tinuous with respect to Lebesgue measure, and such that E[ε] =

E[ν] = 0 and Var(ε) = Var(ν) = 1.

Assumption 3. (ε, ν)′ ∼ Fεν(ε, ν) = C(Fε(ε), Fν(ν); ρ) where
C(·, ·, ; ρ) is a copula known up to scalar parameter ρ ∈ Ω such
that C : (0, 1)2 → (0, 1) is twice differentiable in its arguments
and ρ.

Assumption 4. (X ′, Z ′) does not lie in a proper linear subspace of
Rk+l a.s.5

Assumption 1 imposes that X and Z are exogenous. This as-
sumption, which is commonly imposed in the literature on binary
choice models, excludes heteroskedasticity of the error terms.
Assumption 2 characterizes the restrictions imposed on the
marginal distributions of ε and ν. The moment restrictions are
merely normalizations as long as the second moments of ε and
ν are finite. Under these normalizations, the intercept parameter
is present in the model and the correlation coefficient is the only

5 A proper linear subspace of Rk+l is a linear subspace with a dimension strictly
less than k+ l. The assumption is that, ifM is a proper linear subspace of Rk+l , then
Pr[(X ′, Z ′) ∈ M] < 1.
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