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a b s t r a c t

In this paper, we show how to estimate the asymptotic (conditional) covariance matrix, which appears
in central limit theorems in high-frequency estimation of asset return volatility. We provide a recipe for
the estimation of this matrix by subsampling; an approach that computes rescaled copies of the original
statistic based on local stretches of high-frequency data, and then it studies the sampling variation of
these. We show that our estimator is consistent both in frictionless markets and models with additive
microstructure noise. We derive a rate of convergence for it and are also able to determine an optimal
rate for its tuning parameters (e.g., the number of subsamples). Subsampling does not require an extra
set of estimators to do inference, which renders it trivial to implement. As a variance–covariance matrix
estimator, it has the attractive feature that it is positive semi-definite by construction. Moreover, the
subsampler is to some extent automatic, as it does not exploit explicit knowledge about the structure
of the asymptotic covariance. It therefore tends to adapt to the problem at hand and be robust against
misspecification of the noise process. As such, this paper facilitates assessment of the sampling errors
inherent in high-frequency estimation of volatility. We highlight the finite sample properties of the
subsampler in a Monte Carlo study, while some initial empirical work demonstrates its use to draw
feasible inference about volatility in financial markets.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Volatility is a key ingredient in the assessment and prediction of
financial risk, be it in asset- and derivatives pricing (e.g., Black and
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Scholes, 1973; Sharpe, 1964), portfolio selection (e.g., Markowitz,
1952), or risk management and hedging (e.g., Jorion, 2006).

Around the turn of themillennium, the advent of financial high-
frequency data led to a surge in the nonparametric measurement
of volatility (see, e.g., Andersen et al., 2010; Barndorff-Nielsen
and Shephard, 2007). High-frequency data are recorded at the
tick-by-tick level and store information about the time, price
(i.e., a bid–ask quote or transaction price), and size of individual
orders and executions. In theory, the harnessing of high-frequency
information leads to a perfect, error-free measure of ex-post
volatility via the realized variance; a sum of squared intraday
log-returns (e.g., Andersen and Bollerslev, 1998; Barndorff-Nielsen
and Shephard, 2002).

After the initial – pioneering – work, the literature turned
toward addressing two inherent shortcomings of realized variance.
Firstly, realized variance can only estimate quadratic variation,
and it does not separate continuous, diffusive volatility from
discontinuous jump risk. This motivated the development and
application of estimators that can robustly measure very general
functionals of volatility, also in the presence of jumps (e.g.,
Aït-Sahalia and Jacod, 2012; Andersen et al., 2012; Barndorff-
Nielsen and Shephard, 2004; Barndorff-Nielsen et al., 2006;
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Christensen et al., 2010; Corsi et al., 2010; Mancini, 2009;
Mykland et al., 2012). Secondly, when applied to tick-by-tick data
realized variance is severely biased by common sources of noise,
which form an integral part of any realistic model for securities’
prices (e.g., Hansen and Lunde, 2006b; Zhou, 1996). This paved the
way for the next cohort of estimators that were designed to be
more resistant to noise, e.g., Aït-Sahalia et al. (2005), Barndorff-
Nielsen et al. (2008), Jacod et al. (2009) and Podolskij and Vetter
(2009a); Zhang (2006). As such, much progress has beenmade and
today there is no shortage of estimators that can provide consistent
estimates of volatility functionals in various contexts (either plain
vanilla, or robustly to jumps or noise—or both).

The large battery of estimators at our disposal also bringswith it
an increasing demand for assessing estimation errors and drawing
inference about volatility—e.g., in the form of confidence intervals
or hypothesis tests. This is because whether the sample is small
or large, as long as it is finite, there is necessarily some sampling
error left in the estimate, and when confidence intervals are
computed in practice, high-frequency estimators of volatility are
often found to contain sizable errors (e.g., Barndorff-Nielsen et al.,
2008). The distinction between a realizedmeasure of volatility and
its population target is critical, because failing to properly take
sampling uncertainty into account can severely distort parameter
estimation of stochastic volatilitymodels and be detrimental to the
construction and evaluation of forecasts of volatility (e.g., Andersen
and Bollerslev, 1998; Andersen et al., 2005, 2011; Hansen and
Lunde, 2006a, 2014; Patton, 2011).

There are several problems associated with drawing inference
about volatility functionals in high-frequency data. The first and
foremost is of course to figure out the relevant distribution
theory. The next hurdle is then to find a good proxy for the
asymptotic (conditional) variance of the estimator. This is a
formidable challenge in practice, because the asymptotic variance
often depends on parameters that are substantially more difficult
to back out from the available sample of high-frequency data. The
expression for the asymptotic variance typically also rests heavily
on the properties of the data and it is bound to change depending
on these. This is an unpleasant concern with real high-frequency
data, which are contaminated by market microstructure frictions.
While the noise is often assumed to be i.i.d. and independent of the
efficient price, there is some empirical and theoretical support for
a serially correlated, heteroscedastic, and, potentially, endogenous
noise process at the tick level (e.g., Aït-Sahalia et al., 2011; Diebold
and Strasser, 2013; Hansen and Lunde, 2006b; Kalnina and Linton,
2008). An estimator of the asymptotic variance designed for i.i.d.
and exogenous noise cannot be expected to give valid inference, if
the underlying conditions are violated. In practice, it is not trivial
to verify the conditions imposed on the noise (e.g., Hautsch and
Podolskij, 2013), which makes it more pressing to find estimators
that are robust against modeling criteria. Finally, in multivariate
analysis, inference would at some stage require an estimate of
the asymptotic covariance matrix. Here, the proposed estimator
should ideally be positive semi-definite, while, in contrast, some
existing estimators of the asymptotic covariance matrix in the
high-frequency setting are not assured to be that. As we show in
this paper, this runs smack into problems in practically relevant
and realistic settings (see Table 1 in Section 4).

In this paper, we propose to use subsampling for assessing the
uncertainty embedded in high-frequency estimation of functionals
of financial volatility. Subsampling is based on creating several –
properly rescaled – estimates of the parameter(s) of interest using
local stretches of sample data and then studying the sampling
variation of these. It was originally developed in the context of
stationary time series in the long-span domain (e.g., Politis and
Romano, 1994; Politis et al., 1999). The term appeared in the
high-frequency literature in Zhang et al. (2005), who proposed

a two-scale realized variance based on price subsampling. This
is different from traditional subsampling and actually does not
work for asymptotic variance estimation, because it leads to
an overlapping samples problem in the subsampled returns,
causing the subsample estimates to be too strongly correlated
in large samples. This was pointed out by Kalnina and Linton
(2007) and Kalnina (2011), who propose an inference strategy
based on various alternative subsampling schemes, which lead
to better asymptotic properties. Kalnina (2015) extends these
ideas to inference about a multivariate parameter, while Ikeda
(2016) andVarneskov (2016) consider subsample estimation of the
asymptotic variance of the realized kernel.

As an inferential tool, subsampling has several attractive fea-
tures from a practical point of view. First, subsampling is intuitive
and relatively easy to compute, because it does not require an extra
set of estimators; it uses copies of the original statistic. Second, in
themultivariate context, it leads to variance–covariancematrix es-
timates that are positive semi-definite by construction. And, third,
subsampling does not explicitly take the structure of the asymp-
totic variance into account. It is to a large degree automatic and
has an innate ability to adapt to the problem at hand, whichmakes
it highly robust against design criteria, as shown by Kalnina (2011).
This type of analysis, where inference is effectively carried out by
bypassing the asymptotic variance, is also emphasized by Myk-
land and Zhang (forthcoming), who propose a so-called Observed
Asymptotic Variance, which, as our approach, is based on the com-
parison of adjacent estimators.

This paper builds on these ideas. It contributes to extent lit-
erature in several directions. First, we propose to subsample
bipower variation as a means to estimate the asymptotic vari-
ance–covariance matrix of this statistic. We devise an estima-
tor, which involves fewer tuning parameters compared to Kalnina
(2011). Second, we derive an asymptotic theory within this frame-
work in both frictionless and noisy markets. We show our estima-
tor is consistent under weak assumptions on the data-generating
process, accommodating jumps in the price and volatility, while
allowing the noise to be either heteroscedastic or autocorrelated.
Third, with stronger conditions, we provide a decomposition of the
leading errors of the subsampler, fromwhichwe get insights about
how to configure it by optimally choosing its tuning parameters
(e.g., the number of subsamples). This yields a rate of convergence
for our statistic; a result that has – to the best of our knowledge –
not been derived in earlier work. It reveals that the robustness of
subsampling is not free of charge, but leads to a loss of efficiency
compared to existing estimators in the form of a slower rate of
convergence. It implies a trade-off in that if, for example, one is
prepared to use an estimator, which is not positive semi-definite,
a better rate can potentially be achieved. Or, if prior knowledge
about the asymptotic variance matrix is available or parametric
assumptions can be verified from the data, it is typically better to
construct estimatorswhich attempt to exploit that information rel-
ative to doing subsampling.1 Still, in finite sampleswe show in a re-
alistic setting with microstructure noise the subsampler produces
convincing results compared to some available alternatives.

The rest of this paper goes as follows. Section 2 introduces
the setting. In Section 3, we derive the theory first without and
then with noise. In Section 4, we do numerical simulations in
order to inspect the finite sample performance of our estimator.
In Section 5, we confront our framework with some real high-
frequency data, while the Appendix contains the proofs of our
results.

1 To paraphrase Politis et al. (1999), subsampling is ‘‘a robust starting point
toward even more refined procedures’’.
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