
Journal of Econometrics 195 (2016) 236–254

Contents lists available at ScienceDirect

Journal of Econometrics

journal homepage: www.elsevier.com/locate/jeconom

A simple nonparametric approach to estimating the distribution of
random coefficients in structural models
Jeremy T. Fox a,b,∗, Kyoo il Kim c,∗∗, Chenyu Yang d

a Rice University, United States
b NBER, United States
c Michigan State University, United States
d Simon Business School, University of Rochester, United States

a r t i c l e i n f o

Article history:
Received 27 July 2011
Received in revised form
8 July 2015
Accepted 15 May 2016
Available online 19 September 2016

JEL classification:
C21
C22
C25

Keywords:
Random coefficients
Mixtures
Discrete choices
Dynamic programming
Sieve estimation

a b s t r a c t

We explore least squares and likelihood nonparametric mixtures estimators of the joint distribution of
random coefficients in structural models. The estimators fix a grid of heterogeneous parameters and
estimate only the weights on the grid points, an approach that is computationally attractive compared
to alternative nonparametric estimators. We provide conditions under which the estimated distribution
function converges to the true distribution in the weak topology on the space of distributions. We verify
most of the consistency conditions for three discrete choicemodels. We also derive the convergence rates
of the least squares nonparametricmixtures estimator under additional restrictions.We perform aMonte
Carlo study on a dynamic programming model.
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1. Introduction

Economic researchers often work with models where the pa-
rameters are heterogeneous across the population. A classic exam-
ple is that consumers may have heterogeneous preferences over
a set of product characteristics in an industry with differentiated
products. These heterogeneous parameters are often known as
random coefficients. When working with cross sectional data, the
goal is often to estimate the distribution of heterogeneous param-
eters. Our paper establishes the consistency and rates of conver-
gence of ‘‘fixed grid’’ nonparametric estimators for a distribution of
heterogeneous parameters due to Bajari et al. (2007), Train (2008,
Section 6), Fox et al. (2011), and Koenker andMizera (2014). These
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estimators are computationally simpler than some alternatives.
We use FKRB to refer to Fox et al. (2011).

We estimate the distribution of heterogeneous parameters
F (β) in the model

Pj (x) =


gj (x, β) dF (β) , (1)

where j is the index of the jth out of J finite values of the outcome
y, x is a vector of observed explanatory variables, β is the vector
of heterogeneous parameters, and gj (x, β) is the probability that
the jth outcome occurs for an observation with heterogeneous
parameters β and explanatory variables x. Given this structure,
Pj (x) is the cross sectional probability of observing the jth outcome
when the explanatory variables are x. The researcher picks gj (x, β)
as the underlying model, has an i.i.d. sample of N observations
(yi, xi), and wishes to estimate F (β). As F is only restricted to be a
valid CDF, the mixture model (1) is nonparametric.

The unknown distribution F (β) enters (1) linearly. The estima-
tors we analyze exploit linearity and achieve a computationally
simpler estimator than some alternatives. All the fixed grid esti-
mators divide the support of the vector β into a finite and known
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grid of vectors β1, . . . , βR. Computationally, the unknown param-
eters are the weights θ1, . . . , θR on the R grid points. These can
be estimated using a least squares or likelihood criterion with the
constraints that each θ r ≥ 0 and that

R
r=1 θ

r
= 1. The estima-

tor of the distribution F (β) with N observations and R grid points
becomes

F̂N (β) =

R
r=1

θ̂ r1

βr

≤ β

,

where θ̂ r ’s denote estimated weights and 1 [βr
≤ β] is equal to 1

when βr
≤ β . Computationally, the least squares and likelihood

constrained optimization problems are globally convex and con-
cave, respectively. Particular numerical algorithms are guaranteed
to converge to a global optimum.

FKRB discuss the advantages of this estimator for complex
structural models, like dynamic programming models with
heterogeneous parameters. In this respect, fixed grid estimators
share some computational advantages with the parametric
approach in Ackerberg (2009). Our Monte Carlo study in an online
appendix is to a discrete choice, dynamic programming model.

FKRB and other previous analyses assume that the R grid
points used in a finite sample are indeed the true grid points
that contain the finite support of the true F0 (β). Thus, the true
distribution F0 (β) is assumed to be known up to a finite number of
weights θ1, . . . , θR. As economists often lack convincing economic
rationales to pick one set of grid points over another, assuming that
the researcher knows the true distribution up to finite weights is
unrealistic.

Instead of assuming that the distribution is known up to
weights θ1, . . . , θR, this paper requires the true distribution F0 (β)
to satisfy much weaker restrictions. In particular, the true F0 (β)
can have any of continuous, discrete and mixed continuous and
discrete supports. The prior approaches are parametric as the true
weights θ1, . . . , θR lie in a finite-dimensional subset of a real
space. Here, the approach is nonparametric as the true F0 (β) is
known to lie only in the infinite-dimensional space of multivariate
distributions on the space of heterogeneous parameters β .

In a finite sample of N observations, our estimators are still
implemented by choosing a fixed grid of points θ1, . . . , θR, ideally
to trade off bias and variance in the estimate F̂N (β). We, however,
recognize that as the sample increases, R and thus the fineness of
the grid of points should also increase in order to reduce the bias
in the approximation of F (β). We write R (N) to emphasize that
the number of grid points (and implicitly the grid of points itself) is
nowa function of the sample size. Themain theorem in our paper is
that, under restrictions on the economicmodel and an appropriate
choice of R (N), our least squares and likelihood estimators F̂N (β)
converge to the true F0 (β) as N → ∞, in a function space. We
use the Lévy–Prokhorovmetric, a commonmetrization of theweak
topology on the space of multivariate distributions.

We recognize that the nonparametric versions of our estima-
tors are special cases of sieve estimators (Chen, 2007). Sieve es-
timators estimate functions by increasing the flexibility of the
approximating class used for estimation as the sample size in-
creases. A sieve estimator for a smooth function might use an ap-
proximating class defined by a Fourier series, for example. As we
are motivated by practical considerations in empirical work, our
estimators’ choice of basis, a finite grid of points, is justified by the
estimators’ computational simplicity. Further and unlike a typical
sieve estimator, we need to constrain our estimated functions to
be valid distribution functions. Our constrained least squares and
likelihood approaches are both computationally simple and ensure
that the estimated CDFs satisfy the theoretical properties of a valid
CDF.

Because our estimators are sieve estimators, we prove their
consistency by satisfying high-level conditions for the consistency
of sieve extremum estimators, as given in an appendix lemma in
Chen and Pouzo (2012). We repeat this lemma and its proof in
our paper so our consistency proof is self-contained. Our fixed grid
estimators are not a special case of the two-step sieve estimators
explored using lower-level conditions in themain text of Chen and
Pouzo.1

We prove the consistency of our estimators for the distribution
of heterogeneous parameters, in function space under the weak
topology. We present separate theorems for mixtures of discrete
grid points and mixtures of continuous densities with a grid of
points over the parameters of each density. The theorem for the
mixture of grid points requires the heterogeneous parameters to
lie in a, not necessarily known, compact set. The theorem for a
mixture of continuous densities allows for unbounded support of
the heterogeneous parameters. Our consistency theorems are not
specific to the economic model being estimated.

We provide the rate of convergences for a subset of the
models handled by our consistency theorem, namely those that
are differentiable in the heterogeneous parameters, which include
the random coefficients logit model. The convergence rates, the
asymptotic estimation error bounds, consist of two terms: the
bias and the variance. While obtaining the variance term is rather
standard in the sieve estimation literature, deriving the bias term
depends on the specific approximationmethods (e.g., power series
or splines). Because our use of approximating functions is new
in the sieve estimation literature, deriving the bias term is not
trivial. We provide the bias term, which is the smallest possible
approximation error of the true function using sieves for the class
of models we consider.

Our rate of convergence results highlight an important practical
issue with any nonparametric estimator: there is a curse of dimen-
sionality in the dimension of the heterogeneous parameters. Larger
sample sizes will be needed if the vector of heterogeneous param-
eters has more elements. Further, the rate results indicate that our
baseline estimator is not practicalwhen there are a large number of
heterogeneous parameters. In high dimensional settings, we sug-
gest allowing heterogeneous parameters on only a subset of ex-
planatory variables and estimating homogeneous parameters on
the remaining explanatory variables. We extend our consistency
result to models where some parameters are homogeneous. How-
ever, including homogeneous parameters requires nonlinear opti-
mization,which loses someof the computational advantages of our
estimators.

We provide a Monte Carlo study in an online appendix. We
estimate a dynamic programming, discrete choice model, adding
heterogeneous parameters to the framework of Rust (1987). The
dynamic programming problem must be solved once for each
realization of the heterogeneous parameters. We present results
for both the fixed grid likelihood and least squares estimators as
well as, for comparison, a likelihood estimator where we estimate
both the grid of points and the weights on those points. We
show that our fixed grid estimators have superior speed but
inferior statistical accuracy compared to the more usual approach
of estimating a flexible grid.

The outline of our paper is as follows. Section 2 presents three
examples of discrete choice mixture models. Section 3 introduces

1 Note that under the Lévy–Prokhorov metric on the space of multivariate
distributions, the problem of optimizing the population objective function over
the space of distributions turns out to be well posed under the definition of Chen
(2007). Thus, ourmethod does not rely on a sieve space to regularize the estimation
problem to address the ill-posed inverse problem, as much of the sieve literature
focuses on.
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