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a b s t r a c t

A substantial literature has dealt with the problem of estimating multiple-input and multiple-output
production functions, where inputs and outputs can be good and bad. Numerous studies can be found
in the areas of productivity analysis, industrial organization, labor economics, and health economics.
While many papers have estimated the more restrictive output- and input-oriented distance functions,
here we estimate a more general directional distance function. A seminal paper on directional distance
functions by Chambers (1998) as well as papers by Färe et al. (1997), Chambers et al. (1998), Färe and
Grosskopf (2000), Grosskopf (2003), Färe et al. (2005), and Hudgins and Primont (2007) do not address
the issue of how to choose an optimal direction set. Typically the direction is arbitrarily selected to be
1 for good outputs and −1 for inputs and bad outputs. By estimating the directional distance function
together with the first-order conditions for cost minimization and profit maximization using Bayesian
methods, we are able to estimate optimal firm-specific directions for each input and output which are
consistent with allocative and technical efficiency. We apply these methods to an electric-utility panel
data set, which contains firm-specific prices and quantities of good inputs and outputs as well as the
quantities of bad inputs and outputs. Estimated firm-specific directions for each input andoutput are quite
different from those normally assumed in the literature. The computed firm-specific technical efficiency,
technical change, and productivity change based on estimated optimal directions are substantially higher
than those calculated using fixed directions.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A large literature has dealt with the problem of estimating
multiple-input and multiple-output production functions, where
inputs and outputs can be good or bad. Numerous studies can be
found in the areas of productivity analysis, industrial organization,
labor economics, and health economics. Many studies in the area
of child health estimate reduced form equations, thereby avoiding
the direct estimation of disaggregated multiple-input, multiple-
output structural equations, as summarized in Agee et al. (2012).
Another area of extensive study has been firm efficiency, where
some researchers assume an aggregate production technology, as
in Fernandez et al. (2005).

Other researchers have directly estimated disaggregated
multiple-input, multiple-output production functions (structural
equations) using distance and directional distance functions in an
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attempt to measure the tradeoffs among inputs and outputs, with-
out employing separability or aggregation assumptions. Using an
output-oriented distance function, the researcher has two options.
He can take the approach of holding inputs constant and scale bad
outputs and good outputs by the same parameter to reach the pro-
duction frontier. Pittman (1983) shows that this credits the firm
for increasing a bad output (say pollution) along with a good out-
put (say electricity). Alternatively, the researcher can hold constant
bad outputs and inputs andmeasure the distance from the frontier
using a proportional upward scaling of good outputs. However, no
credit is given for a simultaneous reduction in bad outputs or in-
puts.

Similarly, using an input-oriented distance function, as with
Atkinson and Dorfman (2005), a researcher has two options. First,
he can hold constant good and bad outputs and scale back all inputs
proportionally to reach the frontier. However, again no credit is
given for any simultaneous increase (reduction) in good (bad)
outputs. Alternatively, one can hold good outputs constant, treat
bad outputs like inputs, and scale back both by the same factor
of proportionality. However, the equal-proportionality assumption
provides no credit for an increase in good outputs. None of these
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methods credits the firm for simultaneous changes in all inputs and
outputs.

The less-restrictive directional distance function allows calcula-
tion of the distance to the production frontier using different di-
rections for each input and output, both good and bad. If non-zero
directions are used to change only inputs (outputs) when mea-
suring productivity growth, the directional distance function is
input- (output-) oriented. When non-zero directions are used for
inputs and outputs, the directional distance function is technology-
oriented. The choice of the direction of movement of a firm toward
the frontier clearly affects measures of all structural parameters as
well as the distance from a multiple-output production frontier.
This becomes the basis for computing technical efficiency (TE), us-
ing an input-, output-, or technology-oriented approach, as well as
productivity change (PC), which is the sum of the outward shift of
the frontier, termed technical change (TC), and the extent to which
the firm catches up to the frontier, termed efficiency change (EC).
The latter equals the change in TE.

The exact direction chosen may substantially affect the
calculation of TE as well as the measures comprising PC. As shown
byVardanyan andNoh (2006) andAgee et al. (2012), the parameter
estimates depend on the choice of the directional vectors.
However, a seminal paper on directional distance functions by
Chambers (1998), as well as papers by Färe et al. (1997), Chambers
et al. (1998), Färe and Grosskopf (2000), Grosskopf (2003), Färe
et al. (2005), and Hudgins and Primont (2007) do not address the
issue of how to choose an optimal direction set. As is typical with
the empirical applications for each of these studies, Färe et al.
(2005) estimated an output-oriented directional distance function
for electric utilities involving three good inputs, one good output,
and one bad output using directions of +1 for the good output
and −1 for the bad output and all inputs. As a generalization
of this approach, Agee et al. (2012) considered the impact of
four distinct sets of directions on the estimated parameters of
an output-oriented directional distance function, employed to
explain measures of child health. While this provides information
regarding sensitivity of model results to the directions chosen,
the choice amongst them is left to the researcher. No framework
has been provided within which to determine an optimal set of
directions in a stochastic framework, although in a non-parametric
framework Fare et al. (2013) make the choice of the direction
vector endogenous.

Feng and Serletis (2014) propose a primal Divisia-type produc-
tivity index that incorporates undesirable outputs in a directional
distance function with fixed directions of (+1, −1) for good and
bad outputs, respectively. However, the paper contains numerous
restrictive assumptions, as indicated by Tsionas et al. (2014),which
substantively affect results once they are generalized. Below we
also discuss erroneous statements about required transformations
for estimating distance and directional distance functions. We also
note that the Feng and Serletis (2014) proposed aggregation index
for productivity growth in their Eq. (4) is unit-sensitive and there-
fore is an improper aggregator of good and bad quantities.

In this paper we generalize the previous approaches by
estimating the set of directions that is consistent with cost
minimization and profit maximization. In order to accomplish this,
we first formulate the restrictions that impose the fundamental
translation property for input-, output-, and technology-oriented
stochastic directional distance functions so that these restrictions
contain the directions applied to each input and output. The
translation property, akin to the property of linear homogeneity in
input (output) quantities for an input (output) distance function,
allows one to examine the effect of different directions of
movement toward the frontier for different categories of inputs
and outputs, both good and bad. We then generalize the dual
relationship between the profit function and the technology-
oriented directional distance function, as established by Chambers

(1998), by assuming profit-maximizing behavior and deriving
associated price equations for each input and output. These
equations relate their prices to first-order partial derivatives of
the directional distance function with respect to the quantity
of each input and output and allow identification of directions
for each input and output. This set of equations specializes to a
system which models cost-minimizing behavior by utilizing only
the associated price equations for each input.

Weutilize our technique tomodel the electric utility production
process using a set of inputs and outputs, both good and bad.
Good inputs are energy (E), labor (L), and capital (K), which
includes the annualized capital expenditures on environmental
control for the two major restricted air pollutants, sulfur dioxide
(SO2) and nitrogen oxide (NOX ). These capital expenditures are for
scrubbers to reduce SO2 and NOX emissions and/or modifications
of combustion processes to reduce NOX creation. We also include
the sulfur content of fuels, S, as a bad input.1 This generalization
is important, since bad outputs can be reduced by switching to
fuels with lower S, as well as modifying combustion processes
or installing emission control devices. Trade-offs among these
options have not been modeled in any previous study of electric
utilities. Further, as bad outputs we include emissions of the three
major pollutants—SO2, carbon dioxide (CO2), and NOX . Since the
emissions of CO2 have never been regulated, typically, studies have
included only SO2 as a bad output. Good outputs are residential (R)
and industrial/commercial (IC) electricity generation.

Using a panel of 77 US privately-owned firms producing steam-
electric power over 10 years, we jointly estimate a quadratic
technology-oriented directional distance function and a set of
first-order conditions from the dual cost-minimization and profit-
maximization models. The typical fixed-directions approach relies
on the assumed directions of (+1, −1) for good outputs and good
inputs/bad outputs, respectively. However, we argue that since
goods and non-marketed bads are produced by utilities, their
relative valuation may not be 1-to-1 for all firms, when we model
them as cost minimizers or profit maximizers. Since our data
contain input and output price data, we append price equations
(where prices are related to marginal products) for inputs to
our directional distance function to obtain a cost-minimization
directional distance system and the price equations for all good
inputs and outputs to obtain a profit-maximization directional
distance system. We identify the directions for bad inputs and
bad outputs, which lack prices, using methods explained below.
Using Markov Chain Monte Carlo (MCMC) methods we estimate
these systems, obtaining estimates of all structural parameters,
optimal directions, measures of TE, PC, TC, and EC, and estimates of
the implied optimal percent changes in inputs and outputs. These
directions are those thatwould prevail in the industry if firmswere
cost minimizers or profit maximizers. That is, we are estimating
directional distance functions, not with directions chosen a priori,
but with optimal directions chosen that are consistent with cost
minimization or profit maximization.

As we show in our empirical application, the estimated optimal
directions imply considerably larger measures of efficiency and
productivity change than obtained using the fixed-directions
approach. Optimal directions also imply that for the average firm
to achieve cost minimization (i.e., be allocatively efficient), it must
reduce K relative to L and E. To achieve profit maximization
(assuming that pollutant emission levels are given), it must
additionally reduce R and IC output.

1 The study by Yaisawarng and Klein (1994) includes S, SO2 emissions, electricity
generation, and the required good inputs—production capital, fuel, and labor.
However, they exclude the capital cost of pollution control equipment and the
emissions of the other two major pollutants.
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