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a b s t r a c t

We consider mostly Bayesian estimation of stochastic frontier models where one-sided inefficiencies
and/or the idiosyncratic error term are correlated with the regressors. We begin with a model where a
Chamberlain–Mundlak device is used to relate a transformation of time-invariant effects to the regressors.
This basic model is then extended in two directions: first an extra one-sided error term is added to allow
for time-varying efficiencies. Second, a model with an equation for instrumental variables and a more
general error covariance structure is introduced to accommodate correlations between both error terms
and the regressors. An application of the first and second models to Philippines rice data is provided.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Studies of stochastic frontier models that allow for correlation
between inefficiency effects and regressors are few and have been
mainly done under a fixed effects framework in which a panel
data model with a two-sided error term is estimated first, and the
inefficiency effects are later estimated by subtracting the effects
from their maximum (see e.g. Sickles, 2005 and references cited
therein). Given that stochastic frontiermodels aremore commonly
estimated based on a one-sided random effects assumption, it is
useful to investigate estimation within a framework where the
one-sided random effects are correlated with the regressors. Also
of interest are methods for accommodating correlation between
the idiosyncratic error term and the regressors. The purpose of this
paper is to propose a relatively general approach to modelling of
stochastic frontiers with endogeneity, where one-sided efficiency
effects, and idiosyncratic error terms, can be correlated with
the regressors. We show that by transforming the inefficiency
term into a normally distributed random term and modelling
endogeneity through the mean or covariance of the normal errors,
a range of stochastic frontier models with endogeneity can be
handled.

We first consider a panel stochastic frontier model in which
correlations between the effects and the regressors are based on a
generalisation of the correlated random effects model proposed by
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Mundlak (1978), extended by Chamberlain (1984), and described
further by Wooldridge (2010). Inefficiency effects are assumed
to be correlated with the regressors through the mean of a
transformation of the inefficiency errors. Themain focus is on a log
transformation implying the inefficiency errors have a lognormal
distribution whose first argument depends on the regressors.
Pursuing Bayesian estimation of the model, we derive conditional
posterior densities for the parameters and the inefficiency errors
for use in a Gibbs sampler. We then extend the model in two
directions. Following Colombi et al. (2011), we add a time-
varying inefficiency error leading to a model with both time
invariant (permanent) and time-varying (transient) inefficiency
errors; endogeneity is assumed to occur through correlation
between the regressors and the time-invariant error. Necessary
changes to the previously specified conditional posteriors are
described. The second extension is to a more general model where
endogeneity can exist because both the inefficiency errors and
the idiosyncratic errors are correlated with the regressors. So that
estimation can proceed, a ‘‘reduced form’’ type equation with
instrumental variables is added to the earliermodel. Details of how
to estimate the model using both maximum simulated likelihood
and Bayesian methods are provided.

The paper is organised as follows. The basic Mundlak-type
model where themean of the transformed error is a function of the
regressors is considered in Section 2. In Section 3 we extend this
model to include both permanent and transient inefficiency errors.
Specification and estimation of the model that makes provision
for instrumental variables and accommodates endogeneity more
generally are considered in Section 4. An application using
Philippine rice data and the models from Sections 2 and 3 is
provided in Section 5.
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2. Modelling correlation with a Chamberlain–Mundlak device

In the first instance we consider the following random effects
stochastic production frontier model with a time invariant ineffi-
ciency term

yit = x1,itβ − ui + vit . (2.1)

In Eq. (2.1), i = 1, . . . ,N indexes the firms and t = 1, . . . , T in-
dexes time, x1,it is a row vector of functions of inputs (e.g., logs
of inputs and squared logs of inputs), yit represents the loga-
rithm of output, x1,itβ is the log of the frontier production function
(e.g., translog), ui is a non-negative random error which accounts
for time-invariant inefficiency of firm i, and vit is an idiosyncratic
error assumed to be i.i.d. N


0, σ 2


. The model can also represent

a stochastic cost frontier, with yit being the logarithm of cost, by
changing ‘‘−ui’’ to ‘‘+ui’’.

In view of recent developments in the stochastic frontier
literature – see, for example, Parmeter and Kumbhakar (2014)
– having a model with time-invariant inefficiencies can be
considered too restrictive. However, we include this model in the
first instance as a stepping stone to more realistic time-varying
inefficiency models considered in Sections 3 and 4.

Tomodel correlation between the inefficiency error ui and some
or all of the inputs we assume that there is a transformation of ui,
call it H(ui), that is normally distributed with a mean that depends
on the firm averages of some of the inputs or functions of them.
These functions of the inputs are collected in the vector x2,it and
their firmaverages are given by x̄2,i = T−1T

t=1 x2,it . The resulting
endogeneity model for describing how the inefficiency error is
correlated with the inputs is given by

H(ui) = x̄2,iγ + ei, (2.2)

with ei ∼ i.i.d. N(0, λ2). The most convenient transformation
in the sense that it leads to recognisable conditional posterior
distributions for implementing Gibbs sampling is the logarithmic
one, H(ui) = ln(ui), implying that ui has a lognormal distribution.
Other transformations [e.g., (uρ

i − 1)/ρ for some values of ρ] are
possible.1

Eq. (2.2) is an extension of the model considered by Mundlak
(1978) for a conventional random effects panel data model with
correlated effects. Modelling of endogeneity in this way, and
its extension by Chamberlain (1984), have been referred to as
the Chamberlain–Mundlak device, a device which has proved to
be very useful in the context of nonlinear panel data models
with endogeneity. It has been applied to model endogeneity in
probit, fractional response, Tobit, sample selection, count data,
double hurdle, unbalanced panel models, and models with cluster
sampling. See Wooldridge (2010) for a review and for references
to these applications. Also, when H(ui) = ln(ui), Eq. (2.2) can
be written as ui = exp


x̄2,iγ


u∗

i where u∗

i = exp(ei), implying
the model can also be viewed as a stochastic frontier model with
scaling properties. Alvarez et al. (2006) have studied and argued
in favour of the scaling property in the context of models with
environmental variables.

2.1. Prior specification

For Bayesian estimation of the model in (2.1)–(2.2), we begin
by specifying prior distributions, and then present the conditional
posterior densities that can be used for Gibbs sampling. For β, we
use the noninformative prior p(β) ∝ 1; for the variance of vit , we

1 One can in fact assume any distribution for ui (e.g., exponential), with its cdf
denoted by F(ui), and use the transformationH(ui) = λΦ−1 (F(ui))+ x̄2,iγ, but the
posterior density must then include extra parameters from F(ui).

use σ−2
∼ G (Aσ , Bσ ) where G(Aσ , Bσ ) denotes a gamma density

with shape parameter Aσ and scale parameter Bσ ; a truncated
normal distribution denoted by γ ∼ TN


γ,Vγ ; L,U


is used for

γ. The truncated normal parameters γ and Vγ are what would
be the prior mean vector and covariance matrix for γ if there
were no truncation; L and U are vectors containing the lower and
upper truncation points for each of the elements in γ. For λ two
alternative priors were considered: a gamma prior on λ−2 and a
truncated uniform prior on λ, written as λ−2

∼ G (Aλ, Bλ) and
λ ∼ U (aλ, bλ), respectively.

The choice of priors for β and σ−2 is standard. For γ and
λ, we experimented with several alternative priors, considering
in each case their implications for (1) MCMC convergence, and
(2) the marginal prior distributions of the inefficiency errors and
their efficiencies, defined as ri = exp (−ui). Truncating a normal
prior for γ to values that lead to reasonable efficiency values led
to more precise estimates and improved MCMC convergence. A
gammaprior forλ−2 is in linewithmost traditional priors specified
for variance parameters, while use of a uniform prior for standard
deviations in hierarchical models (which bear some similarity
to our model) has been advocated by Gelman (2006). We defer
discussion on the setting of values for the prior parameters to the
application in Section 5.

2.2. Conditional posterior densities

To use Gibbs sampling for estimation we begin by considering
the conditional posterior densities when H(ui) = ln(ui) and the
prior λ−2

∼ G (Aλ, Bλ) is used. Define u′
= (u1, u2, . . . , uN); let X

be a matrix with NT rows and typical row x1,it and X2 be a matrix
with N rows and typical row x̄2,i. The joint posterior kernel for
2 =


β, σ−2, γ, λ−2,u


is

p (2|y,X,X2) ∝ p

y|X, β, σ−2,u


p

u|X2, γ, λ−2 p (β)

× p

σ−2 p (γ) p


λ−2

∝

σ−2NT/2+Aσ −1

exp


−

σ−2

2


N
i=1

T
t=1


yit − x1,itβ + ui

2
+ 2Bσ

 
λ−2N/2+Aλ−1


N
i=1

u−1
i



× exp


−


λ−2

2

N
i=1


ln ui − x̄2,iγ

2
+ 2Bλ



× exp

−

1
2


γ − γ

′

V−1
γ


γ − γ



×


S

s=1

I (Ls ≤ γs ≤ Us)


(2.3)

where I (Ls ≤ γs ≤ Us) is an indicator function, Ls, Us and γs are
elements of L,U and γ, respectively, and S is the dimension of γ. If
we use the uniform prior λ ∼ U (aλ, bλ), then the joint posterior
density can be obtained from (2.3) by setting Aλ = 1, Bλ = 0, and
including the indicator function I (aλ ≤ λ ≤ bλ). From Eq. (2.3),
andusingD = {y,X,X2} to denote the available data, the following
conditional posterior densities can be derived:
β|2−β,D


∼ N


X′X

−1 X′(y + u ⊗ iT ), σ 2 X′X
−1


, (2.4)


σ−2

| 2−σ−2 ,D


∼ G


Aσ + NT/2, Bσ

+
1
2

N
i=1

T
t=1


yit − x1,itβ + ui

2
, (2.5)
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