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a b s t r a c t

We consider estimation and hypothesis testing on the coefficients of the co-integrating relations and the
adjustment coefficients in vector autoregressions driven by shocks which display both conditional and
unconditional heteroskedasticity of a quite general and unknown form. We show that the conventional
results in Johansen (1996) for the maximum likelihood estimators and associated likelihood ratio tests
derived under homoskedasticity do not in general hold under heteroskedasticity. As a result, standard
confidence intervals and hypothesis tests on these coefficients are potentially unreliable. Solutions based
onWald tests (using a ‘‘sandwich’’ estimator of the variance matrix) and on the use of the wild bootstrap
are discussed. These do not require the practitioner to specify a parametric model for volatility. We
establish the conditions under which these methods are asymptotically valid. A Monte Carlo simulation
study demonstrates that significant improvements in finite sample size can be obtained by the bootstrap
over the corresponding asymptotic tests in both heteroskedastic and homoskedastic environments. An
application to the term structure of interest rates in the US illustrates the difference between standard
andbootstrap inferences regarding hypotheses on the co-integrating vectors and adjustment coefficients.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we focus on the problem of conducting inference
(estimation and hypothesis testing) on the coefficients of the co-
integrating relations and associated adjustment parameters, based
around the likelihood-basedmethods of Johansen (1996), in vector
autoregressive time series which display time-varying behaviour
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in the variance of the driving shocks. We allow for both uncon-
ditional heteroskedasticity (often referred to as non-stationary
volatility in the literature) and conditional heteroskedasticity in
our analysis. It is well known that the assumption of conditional
homoskedasticity appears inconsistent with financial andmacroe-
conomic data; see, for example, Gonçalves and Kilian (2004). A
large body of recent applied work has grown suggesting that the
assumption of constant unconditional volatility is also at odds with
what is observed in the data, with a general decline in the uncondi-
tional volatility of the shocks driving macroeconomic series in the
twenty years or so leading up to the recent financial crisis, the so-
called ‘‘Great Moderation’’, commonly observed; see, for example,
inter alia, Kim and Nelson (1999) and McConnell and Perez Quiros
(2000) and the references therein.

These empirical findings have helped stimulate research into
the impact of time-varying conditional and unconditional volatil-
ity on standard time series methods. Of most relevance to this
paper, Cavaliere et al. (2010b) analyse the impact this has on
the conventional co-integration rank pseudo likelihood ratio (PLR)
tests of Johansen (1996). They demonstrate that the asymptotic

http://dx.doi.org/10.1016/j.jeconom.2015.07.005
0304-4076/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.jeconom.2015.07.005
http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jeconom.2015.07.005&domain=pdf
mailto:h.p.boswijk@uva.nl
mailto:giuseppe.cavaliere@unibo.it
mailto:anders.rahbek@econ.ku.dk
mailto:rtaylor@essex.ac.uk
http://dx.doi.org/10.1016/j.jeconom.2015.07.005


H.P. Boswijk et al. / Journal of Econometrics 192 (2016) 64–85 65

null distributions of the PLR statistics, which are constructed un-
der the assumption that the innovations are i.i.d. and Gaussian,
are non-pivotal in the presence of unconditional heteroskedas-
ticity. Cavaliere et al. (2014) [CRT] show that wild bootstrap
implementations of the PLR tests are, however, asymptotically
valid.1 Cavaliere et al. (2010a) provide a separate treatment for
the case where the shocks are conditionally heteroskedastic but
unconditionally homoskedastic. They show that the standard PLR
tests (based on asymptotic critical values) are asymptotically valid,
but that the correspondingwild bootstrap tests can deliver consid-
erable finite sample improvements.

In this paper we make two distinct contributions to the
literature. Utilising a very general set-up which combines the
assumptions of Cavaliere et al. (2010a,b) into a unified framework,
our first contribution is to examine the impact of time-varying
volatility on the large sample properties of the standard likelihood-
based methods of estimation and hypothesis testing on the
coefficients of the long run relations and the associated adjustment
coefficients (β and α, respectively, in standard notation) detailed
in Johansen (1996). In particular, we analyse the pseudomaximum
likelihood (PML) estimates of these parameters and the associated
PLR test for linear restrictions on these parameters, both derived
under the assumption of an i.i.d. Gaussian pseudo-likelihood. We
also analyse the corresponding Wald statistic, based around a
PML (‘‘sandwich’’) variancematrix estimator.Wedemonstrate that
although the PML estimates are consistent, standard confidence
intervals and PLR test statistics based on the PML estimates of
α and β will not be reliable in general, their form depending
on nuisance parameters arising from any heteroskedasticity in
the shocks. Where the shocks are unconditionally homoskedastic,
however, inference on β alone is shown to be asymptotically
pivotal. For this to hold for the PLR tests involving α, conditional
heteroskedasticity must also be absent from the shocks. We
show that asymptotically robust inference can be achieved on α,
regardless of any heteroskedasticity present, by using the Wald
statistic. This also holds when using the Wald statistic to test
hypotheses involving β , provided the shocks are unconditionally
homoskedastic, but in general is not true when non-stationary
volatility is present. These results complement those given
in Hansen (1992a) for the case of a single equation error-correction
model (as in Engle and Granger, 1987), driven by an error term
whose volatility follows a first-order integrated (I(1)) process.

Our second contribution is to develop wild bootstrap imple-
mentations of the standard PLR and Wald tests. Extant bootstrap
methods for testing hypotheses on the co-integration parameters
deal with tests on β only and are at most devised for the case of in-
dependent, identically distributed shocks; see Omtzigt and Fachin
(2006), Cavaliere et al. (2015) and the references therein. In con-
trast, we derive the conditions under which wild bootstrap im-
plementations of the PLR and Wald tests of hypotheses on both
α and β can replicate the first order limiting null distributions of
the corresponding standard test statistics. In such cases asymptoti-
cally valid bootstrap inference can be performed in the presence of
time-varying volatility using the wild bootstrap versions of these
tests. For the bootstrap PLR tests involving α this requires the as-
sumption of a further moment condition and the assumption of
the absence of asymmetric volatility clustering, as formally defined

1 The algorithm proposed in CRT generates bootstrap samples using estimates
all of which are obtained under the rank restriction imposed by the null, as is also
done in Cavaliere et al. (2012), who use an i.i.d., rather than wild, re-sampling
scheme. Cavaliere et al. (2010a,b) also propose an alternative algorithm, along the
lines of that considered in Swensen (2006) using restricted estimates only for the
long run parameters of the model. Cavaliere et al. (2012) and CRT demonstrate that
the algorithms they propose are preferable to those proposed in Cavaliere et al.
(2010a,b).

below after Assumption 2. For the PLR tests involving only β nei-
ther of these additional assumptions is required,while for theWald
tests, the additional assumption on the form of the volatility clus-
tering is also not required.When testing joint hypotheses on α and
β , statistical leverage effects (defined after Assumption 2) need to
be ruled out for bootstrap inference based on PLR and Wald tests.

The remainder of the paper is organised as follows. Section 2
defines the heteroskedastic model, discussing in detail the type of
time-varying volatility that we consider. We then characterise the
asymptotic behaviour of the common trends in the process. Next,
we introduce a class of hypotheses on the co-integrating vectors
and error correction coefficients. Section 3 derives the asymptotic
null distributions of the PLR andWald test statistics for the class of
hypotheses we consider. The wild bootstrap approach, based on a
sieve-type procedure using the PML coefficient matrix estimates
from the co-integrated VAR model, is outlined in Section 4.
Here the conditions under which the wild bootstrap tests deliver
asymptotically valid inference are also detailed. In Section 5
we use Monte Carlo simulation evidence to compare the small
sample size properties of the standard (asymptotic) tests and their
bootstrap analogues for a variety of heteroskedastic co-integrated
VAR models. An empirical application of the proposed methods
to the term structure of interest rates in the US is presented in
Section 6. Section 7 concludes. All proofs are contained in the
Appendix.

In the following ‘
w
→’ denotes weak convergence and ‘

p
→’

convergence in probability, in each case as the sample size, T ,
diverges; I(·) denotes the indicator function and ‘x := y’ (‘x =: y’)
indicates that x is defined by y (y is defined by x); ⌊·⌋ denotes the
integer part of its argument. The notation CRm×n [0, 1] is used to
denote the space of m × n matrices of continuous functions on
[0, 1]; DRm×n [0, 1] denotes the space of m × n matrices of càdlàg
functions on [0, 1], equipped with the Skorohod metric. The space
spanned by the columns of anym×nmatrix A is denoted as col(A);
if A is of full column rank n < m, then A⊥ denotes anm × (m − n)
matrix of full column rank satisfying A′

⊥
A = 0. For any square

matrix, A, |A| is used to denote the determinant of A, ∥A∥ the norm
∥A∥

2
:= tr


A′A

, and ρ (A) its spectral radius (that is, the maximal

modulus of the eigenvalues of A). For any vector, x, ∥x∥ denotes
the usual Euclidean norm, ∥x∥ :=


x′x
1/2. Finally, ⊗ denotes the

Kronecker product.

2. The heteroskedastic VAR model and hypotheses

We consider the following VAR(k) model in error-correction
format:

∆Xt = αβ ′Xt−1 +

k−1
j=1

Γj∆Xt−j + αρ ′

1D1t + µ2D2t + εt ,

t = 1, . . . , T , (1)

where Xt is a p-variate vector process, with initial values
(X1−k, . . . , X0), which are known and taken to be fixed in the
statistical analysis, and D1t and D2t are vectors of deterministic
terms, such as a constant or linear trend, of dimensions d1 and d2,
respectively. The disturbance εt is assumed to be a p-variate vector
martingale difference sequence relative to some filtration Ft , with
finite and positive definite conditional variance matrix. Further
conditions on εt are discussed below. The parameter matrices α
and β , which are our key focus in this paper, are of dimension p×r ,
with 0 < r < p, and {Γj}

k−1
j=1 are p × p lag coefficient matrices. The

co-integration rank, r , is assumed to be known in what follows; in
practice thiswould first be determinedusing thewild bootstrap co-
integration rank tests of CRT. The parametermatricesρ1 andµ2 are
of dimension d1×r and p×d2, respectively; note thatD1t enters the
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