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a b s t r a c t

This paper develops a frequentist model averaging method based on the leave-subject-out cross-
validation. Thismethod is applicable not only to averaging longitudinal datamodels, but also to averaging
time series models which can have heteroscedastic errors. The resulting model averaging estimators
are proved to be asymptotically optimal in the sense of achieving the lowest possible squared errors.
Both simulation study and empirical example show the superiority of the proposed estimators over their
competitors.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Model averaging (MA), a smoothed extension of model selec-
tion (MS), generally yields a lower risk thanmodel selection. There
are many studies on Bayesian model averaging. Hoeting et al.
(1999) provided a comprehensive review in this direction. Recent
years have also witnessed a booming development of frequentist
model averaging methods such as weighting strategy based on
the scores of information criteria (Buckland et al., 1997; Hjort and
Claeskens, 2003, 2006; Zhang and Liang, 2011; Zhang et al., 2012;
Xu et al., 2014), the adaptive regression by mixing by Yang (2001),
Mallows model averaging (MMA) by Hansen (2007), and optimal
mean squared error averaging by Liang et al. (2011). Recently,
taking heteroscedasticity into consideration, Hansen and Racine
(2012) proposed a jackknife model averaging (JMA) method that
selects weights by minimizing a leave-one-out cross-validation
criterion. The JMA estimator performs quite well in cross-sectional
data. However, for longitudinal data, there generally exists within-
subject correlation in error terms, thus the JMAmethodmay not be
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appropriate. In the current paper, we develop a model averaging
estimator called leave-subject-out model averaging (LsoMA) esti-
mator for longitudinal data models.

There exists a rich literature on longitudinal data models. For
an overview of parametric longitudinal data models, one can refer
to Arellano (2003), Hsiao (2003) and Baltagi (2005). Nonparametric
(Rice and Silverman, 1991; Fan andZhang, 2000;Welsh et al., 2002;
Zhu et al., 2008) and semiparametric longitudinal data models
(Zeger and Diggle, 1994; Zhang et al., 1998; Lin and Ying, 2001)
have also been considered. Penalized model selection methods are
commonly used in nonparametric and semiparametric models. In
the current paper, we use a quadratic penalty based on smoothing
splines. The popular nonquadratic penalties, such as the least
absolute shrinkage and selection operator (Tibshirani, 1996), hard
thresholding (Antoniadis, 1997; Fan, 1997), and the smoothly
clipped absolute deviation penalties (Fan and Li, 2001) can also
be utilized here. For all these methods, tuning parameters need
to be selected. Rice and Silverman (1991) introduced the leave-
subject-out cross-validation (LsoCV) to select tuning parameters.
Thismethod has beenwidely used in longitudinal datamodel since
then. For example, Xu and Huang (2012) utilized the LsoCV to
select variables in the semiparametric longitudinal datamodel, and
proved the asymptotic optimality of their approach. Further, they
developed an efficient computation procedure for the LsoCV.
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The current paper focuses on model averaging. By using
our model averaging method, the estimators based on different
covariates or different tuning parameters are asymptotically
optimally combined, i.e., under some regularity conditions, our
model averaging estimator minimizes predictive squared error in
large sample cases. A related work dealing with longitudinal data
was done by Zhang et al. (2014). They developed amodel averaging
method to combine forecasts from linear mixed-effects models. In
the current paper, to be more general, we allow each candidate
model to contain non-parametric component.

On the other hand, series dependence always exists in time
series models. A natural idea is to treat those with high correlation
as a subject, and thus we can use the LsoMA method to combine
time series models. In this paper, we will show that the resulting
LsoMA estimator is also asymptotically optimal. In Cheng and
Hansen (2015), the LsoCV criterion was suggested to average
forecasts for factor-augmented regressions, but the corresponding
asymptotic optimality was not achieved in that work.

We do a Monte Carlo study to compare the finite sample
performance of the proposed LsoMAmethodwith others including
model selection methods by AIC, BIC and LsoCV, and model
averaging methods by smoothed AIC and smoothed BIC (Buckland
et al., 1997), and JMA in both longitudinal data model and time
series model. Simulation results indicate that the LsoMA estimator
performs better than its competitors in most cases. We also
conduct an empirical study on the Chinese consumer price index,
which shows that our method has better forecasting performance
than the commonly used model selection and averaging methods.

The remainder of this paper is organized as follows. Section 2
proposes the LsoMA estimator for longitudinal data model and
develops its asymptotic optimality theory. Section 3 studies the
LsoMA method for time series models. Section 4 numerically
compares our LsoMA estimators with those obtained from some
commonly used model selection and model averaging methods.
Section 5 conducts an empirical study. Section 6 concludes. The
proofs are relegated to Appendix.

2. Leave-subject-out model averaging for longitudinal data
models

2.1. Model framework

Suppose that (yij, xij), j = 1, . . . , Ti, are observations for subject
i, i = 1, . . . , n. Let Yi = (yi1, . . . , yiTi)

′,Xi = (xi1, . . . , xiTi)
′ andX = (X′

1, . . . ,
X′

n)
′. We consider the following semiparametric

model for longitudinal data

Yi = µi + εi, i = 1, . . . , n,
µi = (µi1, . . . , µiTi)

′,

µij = E(yij|Xi) = x′

ij,0β0 +

L
l=1

fl(xij,l), j = 1, . . . , Ti,

where xij,0 contains variables of parametric component, xij,1, . . . ,
xij,L are variables of nonparametric component,β0 is the coefficient
vector of the linear component, f1, . . . , fL are smooth functions,
and εi’s are independent disturbances with E(εi|Xi) = 0 and
E(εiε

′

i|
Xi) = Σi.We can use a basis expansion to approximate each

fl. Then, there exist a design matrix Xi and an unknown parameter
vector β such that µi ≈ Xiβ. Specifically, Xi = (X∗

1,i,X
∗

2,i)
consists of two parts: the linear regression variables matrix X∗

1,i,
and the basis matrix X∗

2,i used to approximate the nonparametric
component.

We estimateβ byminimizing the following penalizedweighted
least squares (Xu and Huang, 2012)

pl(β) =

n
i=1

(Yi − Xiβ)′V−1
i (Yi − Xiβ) +

L
l=1

λlβ
′Flβ,

where Vi’s are working covariance matrices, Fl is a positive semi-
definite matrix such that β′Flβ serves as a roughness penalty for fl,
and λ1, . . . , λL are tuning parameters. In the current paper, penal-
ties are put only on the nonlinear parts, so Fl is a block diagonal
matrix with the block corresponding to the linear part being 0.
Let λ = (λ1, . . . , λL)

′, Y = (Y′

1, . . . , Y
′
n)

′, X = (X′

1, . . . ,X
′
n)

′,
µ = (µ′

1, . . . ,µ
′
n)

′, and V = diag{V1, . . . ,Vn}. The estimator of
β can be expressed as

β =


X′V−1X +

L
l=1

λlFl

−1

X′V−1Y.

There aremanymethods for constructing the basismatrixX∗

2 ≡

(X∗′

2,1, . . . ,X
∗′

2,n)
′ and the penalty matrix Fl. For example, one can

use the spline basis to generate X∗

2 . Linear spline is the simplest
method but has a sharp corner disadvantage. Quadratic spline ba-
sis can remedy this disadvantage as it has a continuous first deriva-
tive. The truncated power basis of degree higher than two provides
more complex regression functions. However, it may lead to nu-
merical instability due to its nonorthogonality, which can be over-
come by the B-spline basis. For the penaltymatrix Fl, we can utilize
the squared second-difference penalty, the squared second deriva-
tive penalty or the thin-plate splines penalty. More details on the
basis and penalty matrices can be found in Green and Silverman
(1994) and Ruppert et al. (2003).

Following Claeskens et al. (2009), we take penalized B-
spline as an example to show how to construct the basis and
penalty matrices. For simplicity, we consider the model with only
one nonparametric covariate, so that there is only one tuning
parameter λ and L = 1. Let r be the order of B-splines. Define
a sequence of knots on the interval [Ilow, Iup]: Ilow = m−(r−1) =

· · · = m0 < m1 < · · · < mKn < mKn+1 = · · · = mKn+r = Iup. Basis
functions can be expressed as

Bj,1(x) =


1, mj ≤ x < mj+1,
0, otherwise,

Bj,r(x) =
x − mj

mj+r−1 − mj
Bj,r−1(x) +

mj+r − x
mj+r − mj+1

Bj+1,r−1(x),

for j = −(r − 1), . . . , Kn. Then, the kth row of X∗

2,i is (B−(r−1),r
(xik,1), . . . , BKn,r(xik,1)). The penalty term can be written as
λβ′

2∆
′

qR∆qβ2, where β2 is the coefficient vector of X∗

2 , R is a
(Kn + r − q) × (Kn + r − q) matrix with its ij element Rij = Iup
Ilow

Bj,r−q(x)Bi,r−q(x)dx, and ∆q is a matrix of qth order difference
operator. If the knots are equidistant, i.e., mj − mj−1 = δ for
j = 1, . . . , Kn + 1, then ∆q can be expressed in terms of the qth
backward difference operator ∇q, i.e., ∆q = δ−q∇q. Each element
of the matrix ∇q is defined recursively via ∇q = ∇1(∇q−1) and
∇1βj = βj−βj−1. If we take q = r−1, then R reduces to a diagonal
matrix with the diagonal element δ.

The working covariance matrices Vi’s are generally estimated
based on the working correlation structures of εi’s. In practice,
compound symmetry and autoregressive structures are commonly
used working correlation structures. As commented by Liang and
Zeger (1986), a possibly misspecified correlation structure also has
a potential to improve the estimation efficiency over a method
that completely ignores the within-subject correlation. Diggle
et al. (2002) provided details on the choice of working correlation
structure for longitudinal data. In the current paper, following Xu
and Huang (2012), we set Vi’s to be the identity matrices at first,
based on which the model is estimated to get residuals, and then
Vi’s are estimated using these residuals.

2.2. Model averaging criterion

Assume that candidate estimators differ from each other in
regressors and/or tuning parameters. Let X = {X(1), . . . ,
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