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a b s t r a c t

We develop Granger causality tests that apply directly to data sampled at different frequencies. We
show that taking advantage of mixed frequency data allows us to better recover causal relationships
when compared to the conventional common low frequency approach. We also show that the new
causality tests have higher local asymptotic power as well as more power in finite samples compared to
conventional tests. In an empirical application involving U.S.macroeconomic indicators, we show that the
mixed frequency approach and the low frequency approach produce very different causal implications,
with the former yielding more intuitively appealing result.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that temporal aggregation may have spuri-
ous effects on testing for Granger causality, as noted by Clive
Granger himself in a number of papers, see e.g. Granger (1980,
1988) and Granger and Lin (1995).1 It is worth noting that when-
ever Granger causality and temporal aggregation are discussed, it
is typically done in a setting where all series are subject to tem-
poral aggregation. In such a setting it is well-known that even the
simplest models, like a bivariate VAR(1) with stock (or skipped)
sampling, may suffer from spuriously hidden or generated
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1 Early contributions by Zellner and Montmarquette (1971) and Amemiya and

Wu (1972) pointed out the potentially adverse effects of temporal aggregation
on testing for Granger causality. The subject has been extensively researched
ever since, see notably Lütkepohl (1993), Renault et al. (1998), Marcellino
(1999), Breitung and Swanson (2002), McCrorie and Chambers (2006), and
Silvestrini and Veredas (2008), among others.

causality, and recovering the original causal pattern is very hard
or even impossible in general.

In this paperwe deal withwhatmight be an obvious, yet largely
overlooked remedy. Time series processes are often sampled at
different frequencies and then typically aggregated to the common
lowest frequency to test for Granger causality. The analysis of the
present paper pertains to comparing testing for Granger causality
with all series aggregated to a common low frequency, and testing
for Granger causality taking advantage of all the series sampled
at whatever frequency they are available. We rely on mixed
frequency vector autoregressive, henceforth MF-VAR, models to
implement a new class of Granger causality tests.

We show that mixed frequency Granger causality tests bet-
ter recover causal patterns in an underlying high frequency pro-
cess compared to the traditional low frequency, henceforth LF,
approach. We also formally prove that mixed frequency, hence-
forth MF, causality tests have higher asymptotic power against lo-
cal alternatives and show via simulation that this also holds in
finite samples involving realistic data generating processes. The
simulations indicate that the MF-VAR approach works well for
small differences in sampling frequencies—like quarterly/monthly
mixtures.

We apply the MF causality tests to monthly U.S. inflation,
monthly crude oil price fluctuations and quarterly real GDP
growth. We also apply the conventional causality test to the
aggregated quarterly price series and real GDP for comparison.
These two approaches yield very different conclusions regarding
causal patterns. In particular, significant causality from oil prices
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to inflation is detected by the MF approach but not when applying
conventional Granger causality tests based on LF data. The result
suggests that the quarterly frequency is too coarse to capture such
causality.

The nature of MF implies that we are potentially dealing
with multi-horizon Granger causality since more than one period
high frequency (HF) observations are collected within a single
LF time span. Moreover, as in the standard (single frequency)
VAR literature, exploring MF Granger causality among more than
two series also invariably relates to the notion of multi-horizon
causality, see in particular Lütkepohl (1993), Dufour and Renault
(1998) andHill (2007). Of direct interest to us is Dufour andRenault
(1998) who generalized the original definition of single-horizon
or short run causality to multiple-horizon or long run causality to
handle causality chains: in the presence of an auxiliary variable, say
Z , Y may be useful for a multiple-step ahead prediction of X even if
it is useless for the one-step ahead prediction. Dufour and Renault
(1998) formalize the relationship between VAR coefficients and
multiple-horizon causality andDufour et al. (2006) formulateWald
tests for multiple-horizon non-causality. Their framework will be
used extensively in our analysis.

In addition to the causality literature, the present paper also
draws upon and contributes to the MIDAS literature originated
by Ghysels et al. (2004, 2005). A number of papers have linked
MIDAS regressions to (latent) high frequency VAR models, such
as Kuzin et al. (2011) and Foroni et al. (2015), whereas Ghysels
(forthcoming) discusses the link between MF-VAR models and
MIDAS regressions. None of these papers study in any detail the
issue of Granger causality, which is the topic of the present paper.

The paper is organized as follows. In Section 2 we frame MF-
VAR models and present core assumptions. In Section 3 we de-
rive the asymptotic properties of the least squares estimator,
and a Wald statistic for testing arbitrary linear restrictions on an
h-step ahead autoregression. We then develop the mixed fre-
quency causality tests by extending ideas on h-step ahead non-
causality tests in Dufour and Renault (1998) and Dufour et al.
(2006) to mixed frequencies. Section 4 discusses how we can re-
cover underlying causality using amixed frequency approach com-
pared to a traditional LF approach. Section 5 shows that the mixed
frequency causality tests have higher local asymptotic power than
the LF ones do. Section 6 reports Monte Carlo simulation results
and documents the finite sample power improvements achieved
by the mixed frequency causality test. In Section 7 we apply the
mixed frequency and LF causality tests toU.S.macroeconomic data.
Finally, Section 8 provides some concluding remarks.

We will use the following notational conventions throughout.
Let A ∈ Rn×l. The l2-norm is |A| := (

n
i=1
l

j=1 a
2
ij)

1/2
=

(tr[A′A])1/2; the Lr -norm is ∥A∥r := (
n

i=1
l

j=1 E|aij|r)1/r ; the
determinant is det(A); and the transpose isA′.0n×l is an n×lmatrix
of zeros. IK is the K -dimensional identity matrix. Var[A] is the
variance–covariance matrix of a stochastic matrix A. B ◦ C denotes
element-by-element multiplication for conformable vectors B, C .

2. Mixed frequency data model specifications

In this section we present the MF-VAR model and three main
assumptions. We want to characterize three settings, respectively
high, mixed and low frequency or HF, MF and LF. We begin
by considering a partially latent underlying HF process. Using
the notation of Ghysels (forthcoming), the HF process contains
{{xH(τL, k)}mk=1}τL and {{xL(τL, k)}mk=1}τL , where τL ∈ {0, . . . , TL}
is the LF time index (e.g. quarterly), k ∈ {1, . . . ,m} denotes
the HF (e.g. monthly), and m is the number of HF time periods
between LF time indices. In the month versus quarter case, for
example, m equals three since one quarter has three months.

Observations xH(τL, k) ∈ RKH×1, KH ≥ 1, are called HF variables,
whereas xL(τL, k) ∈ RKL×1, KL ≥ 1, are latent LF variables because
they are not observed at high frequencies—as only some temporal
aggregates, denoted xH(τL), are available.

Note that two simplifying assumptions have implicitly been
made. First, there are assumed to be only two sampling frequen-
cies. Second, it is assumed that m is fixed and does not depend
on τL. Both assumptions can be relaxed at the cost of much more
complex notation and algebra which we avoid for expositional
purpose—again see Ghysels (forthcoming). In reality the econome-
trician’s choice is limited toMF and LF cases. Only LF variables have
been aggregated from a latent HF process in a MF setting, whereas
both low and high frequency variables are aggregated from the la-
tent HF process to form a LF process. Following Lütkepohl (1987)
we consider only linear aggregation schemes involving weights
w = [w1, . . . , wm]

′ such that:

xH(τL) =

m
k=1

wkxH(τL, k) and xL(τL) =

m
k=1

wkxL(τL, k). (2.1)

Two cases are of special interest given their broad use: (1) stock or
skipped sampling, where wk = I(k = m); and (2) flow sampling,
where wk = 1 for k = 1, . . . ,m.2 In summary, we observe:

• all high and low frequency variables {{xH(τL, j)}mj=1}τL and
{{xL(τL, j)}mj=1}τL in a HF process;

• all high frequency variables {{xH(τL, j)}mj=1}τL but only aggre-
gated low frequency variables {xL(τL)}τL in a MF process;

• only aggregated high and low frequency variables {xH(τL)}τL
and {xL(τL)}τL in a LF process.

A key idea of MF-VAR models is to stack everything observable
given a MF process in what we call the mixed frequency vector:

X(τL) = [xH(τL, 1)′, . . . , xH(τL,m)′, xL(τL)′]′. (2.2)

The dimension of the mixed frequency vector is K = KL + mKH .
Note that xL(τL) is the last block in the mixed frequency vector—
a conventional assumption implying that it is observed after
xH(τL,m). Any other order is conceptually the same, except that
it implies a different timing of information about the respective
processes. We will work with the specification appearing in (2.2)
as it is most convenient.

Example 1 (Quarterly Real GDP). A leading example of how a
mixed frequency model is useful in macroeconomics concerns
quarterly real GDP growth xL(τL), where existing studies of
causal patterns use monthly unemployment, oil prices, inflation,
interest rates, etc. aggregated into quarters (see e.g., Hill (2007)
for references). Consider the monthly oil price changes and CPI
inflation stacked into a 6 × 1 vector (since we have two series
for threemonths) [xH(τL, 1)′, . . . , xH(τL, 3)′]′, which concatenated
with quarterly GDP yields the vector X(τL) appearing in (2.2),
which will be further analyzed in Section 7.

Wewillmake a number of standard regulatory assumptions. Let
FτL ≡ σ(X(t) : t ≤ τL). In particular we assume E[X(τL)|FτL−1]

has a version that is almost surely linear in {X(τL − 1), . . . ,X(τL −

p)} for some finite p ≥ 1.

Assumption 2.1. The process X(τL) is governed by a VAR(p) for
some p ≥ 1:

X(τL) =

p
k=1

AkX(τL − k) + ϵ(τL). (2.3)

2 One can equivalently let wk = 1/m for k = 1, . . . ,m in flow sampling if the
average is preferred to a summation.
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