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a b s t r a c t

This study’s main contribution is to theoretically analyze the application of bootstrap methods to
instrumental variable models when the available instruments may be weak and the number of
instruments goes to infinity with the sample size. We demonstrate that a standard residual-based
bootstrap procedure cannot consistently estimate the distribution of the limited information maximum
likelihood estimator or Fuller (1977) estimator under many/many weak instrument sequence. The
primary reason is that the standard procedure fails to capture the instrument strength in the sample
adequately. In addition, we consider the restricted efficient (RE) bootstrap of Davidson and MacKinnon
(2008, 2010, 2014) that generates bootstrap data under the null (restricted) and uses an efficient estimator
of the coefficient of the reduced-form equation (efficient). We find that the RE bootstrap is also invalid;
however, it effectively mimics more key features in the limiting distributions of interest, and thus, is less
distorted in finite samples than the standard bootstrap procedure. Finally, we proposemodified bootstrap
procedures that provide a valid distributional approximation for the two estimators with many/many
weak instruments. A Monte Carlo experiment shows that hypothesis testing based on the asymptotic
normal approximation can have severe size distortions in finite samples. Instead, our modified bootstrap
procedures greatly reduce these distortions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Empirical applications of instrumental variable (IV) estimation
often produce imprecise results. It is now well understood
that standard first-order asymptotic theory breaks down when
the instruments are weakly correlated with the endogenous
regressors. In this case, commonly used IV estimators such as
two-stage least square (TSLS) and limited information maximum
likelihood (LIML) estimators can lose consistency; cf., Dufour
(1997) and Staiger and Stock (1997), among others. However,
as demonstrated by Chao and Swanson (2005), having many
instruments in such a weakly identified situation can help to
improve estimation accuracy. Indeed, using a large number of
instruments can enhance the growth of the so-called concentration
parameter even if each individual instrument is only weakly
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correlated with the endogenous explanatory variables. Chao and
Swanson (2005) show that for well-centered IV estimators such
as LIML, consistency can be established even when instrument
weakness is such that the rate of growth of the concentration
parameter is much slower than the sample size n. In addition,
Hansen et al. (2008) reveal in an application from Angrist
and Krueger (1991) that using 180 instruments, rather than 3,
substantially improves estimator accuracy.

Moreover, for implementing inferences in the context of
many/many weak instruments, Hansen et al. (2008) provide
corrected standard errors (CSE). The CSE are an extension of those
of Bekker (1994) to the case of non-Gaussian disturbances and
are correct under a variety of asymptotic frameworks, including
the many weak instrument sequence of Chao and Swanson (2005)
and Stock and Yogo (2005), as well as the many instrument
sequence of Kunitomo (1980), Morimune (1983) and Bekker
(1994). Recently, the CSE are extended further by Chao et al.
(2012) and Hausman et al. (2012) to the heteroscedastic case
and by Newey and Windmeijer (2009) to continuously updating
generalized method of moments (CUE) and other generalized
empirical likelihood (GEL) estimators.
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However, our simulation evidence shows that hypothesis
testing or confidence intervals (CIs) based on the CSE can be
distorted severely in finite samples, especially in the case of strong
endogeneity. This provides motivation for the use of the bootstrap
instead of the asymptotic normal approximation to improve the
quality of inference. Furthermore, the CSE have a rather tedious
form, and thus, can be difficult to implement in practice; this
also motivates the use of bootstrap methods. In particular, the
bootstrap would help to avoid computing the tedious form of the
CSE if bootstrap variance estimators or percentile-type bootstrap
methods are valid under many/many weak instruments.

The existing literature on bootstrapping IV models turns out to
be rather limited. Moreira et al. (2009) provide theoretical proof
that guarantees the bootstrap validity of Kleibergen (2002)’s score
statistic even under Staiger and Stock (1997)’s weak instrument
asymptotics, in which the coefficients of the instruments are
specified to be in an n−1/2 shrinking neighborhood of zero and
the number of instruments is kept fixed. Davidson andMacKinnon
(2008, 2010, 2014) study various bootstrap methods (pairs
bootstrap and residual-based bootstrap) of hypothesis testing and
constructing confidence sets for the IV model. Their extensive
simulation results show that the bootstrap approaches typically
perform very well relative to the normal approximation, including
the case in which instruments are quite weak. However, all these
studies focus on the case in which the number of instruments is
kept small relative to the sample size.

In this paper, we analyze bootstrap-based inference methods
under many/many weak instruments. Based on the excellent
results for the cases with a small number of instruments, one
may expect the bootstrap also to perform well when the number
of instruments becomes large. Surprisingly, we find that the
bootstrap typically fails to mimic the limiting distributions of
IV estimators in this context. We first consider a standard
residual-based bootstrap method, in which the residual of the
structural-form equation is obtained by using the LIML or
Fuller (1977, FULL) estimator and the residual of the reduced-
form equation is obtained by using the least squares estimator.
We show analytically that this procedure cannot estimate the
limiting distribution of LIML or FULL consistently. In particular,
when the number of instruments is of the same order of
magnitude as the rate of growth of the concentration parameter,
the bootstrap analogue correctly replicates the convergence
rate of the estimator, but the bootstrap limiting distribution
has an asymptotic variance different from the original one.
Furthermore, when the number of instruments grows faster than
the concentrationparameter, the convergence rate of the bootstrap
analogue becomes even faster than that of LIML or FULL.

The primary reason of this bootstrap failure is that the standard
procedure generates in the bootstrap sample ‘‘pseudo’’ instrument
strength, which has at least the same order of magnitude as the
original instrument strength. In addition, in the case with a large
number of instruments, the bootstrap d.g.p. cannot mimic well
important features of the disturbances in the IV model. Because of
these inconsistencies, commonly used bootstrap-based inference
approaches such as bootstrap variance estimator or percentile
type bootstrap methods will be invalid in the case of many/many
weak instruments. Similar results can be shown for other IV
estimators such as the TSLS estimator, the bias-corrected TSLS
estimator (Nagar, 1959; Rothenberg, 1984), and various jackknife
IV estimators (Phillips and Hale, 1977; Angrist et al., 1999; Chao
et al., 2012; Hausman et al., 2012; Bekker and Crudu, 2015).

We then consider the restricted efficient (RE) bootstrap
procedure of Davidson and MacKinnon (2008, 2010, 2014), which
generates bootstrap data under the null hypothesis (restricted) and
uses efficient estimates of the reduced-form equation (efficient).
These studies demonstrate that the RE bootstrap performs very

well relative to the standard procedure. Here, we show that in the
current context, the RE bootstrap also cannot estimate the limiting
distribution of LIML or FULL consistently. However, we find that
it is typically more robust to the instrument weakness than the
standard bootstrap, and hence, exhibits relatively less distortion
in finite samples.

Finally, we propose modifications to the RE bootstrap and
justify that our modified bootstrap procedures provide a valid
distributional approximation for LIML or FULL under many/many
weak instrument sequences. In particular, we modify the RE
bootstrap procedure by accurately rescaling the residuals and by
introducing alternative reduced-form estimators, which allows
the bootstrap to mimic well the instrument strength in the
sample. Furthermore, we show analytically that all the bootstrap
procedures analyzed in this study are asymptotically valid
under percentile-t type methods. A Monte Carlo experiment
demonstrates that the CSE-based normal approximation can have
severe size distortions when the concentration parameter is small
and/or when the degree of endogeneity is high. Our modified
procedures can largely remove these distortions. In particular, one
of our modified bootstrap performs best among all the procedures
in terms of size control, while our second procedure is relatively
balanced between size and power.

To the best of our knowledge, this study is the first to
theoretically analyze the bootstrap validity under many/many
weak instruments, and we obtain interesting implications of the
properties of bootstrap methods that can be overlooked under
conventional asymptotics. Indeed, the asymptotic approach taken
here forces the distributional approximations to be more sensitive
to the number and strength of available instruments and our
findings highlight a fragility of bootstrap-based approximations
with respect to these key features. In particular, conditions
much more restrictive than those for the CSE-based normal
approximation are necessary for existing bootstrap methods to
estimate the limiting distributions of IV estimators consistently
under many/many weak instruments. Furthermore, our results
include modified, valid bootstrap procedures for the IV models,
which effectively mimics the important features in the limiting
distribution of interest.

The remainder of the paper is organized as follows. Section 2
introduces the model and provides a summary of the asymptotic
theory for the estimators of interest and the CSE. Section 3 analyzes
various residual-based bootstrap procedures and documents the
inconsistency of the standard and RE bootstraps undermany/many
weak instrument sequences. Furthermore, we show that our
modified bootstrap procedures provide a valid distributional
approximation for LIML or FULL in this context. Section 4 contains
the Monte Carlo results, and Section 5 concludes. All proofs are
relegated to the Appendix.

2. The model, assumptions and asymptotic theory

We consider a standard linear IV regression given by

y = Xβ + ϵ, (1)
X = ZΠ + V , (2)

where y and X are an n × 1 vector and an n × k matrix of
observations on the endogenous variables, respectively, and Z is
an n × l matrix of observation on the instruments, which we treat
as deterministic. ϵ and V are an n × 1 vector and an n × k matrix
of random disturbances, respectively. We denote PZ = Z(Z ′Z)−1Z ′

and MZ = In − PZ , where In is an identity matrix with dimension
n. Throughout this study, we consider the case in which k, the
dimension of β , is small relative to n, but we let l → ∞ as
n → ∞ in order to model the effect of having many/many weak
instruments. In addition, we assume that the included exogenous
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