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a b s t r a c t

This paper considers inference for the set ΘI of parameter values that minimize a criterion function.
Chernozhukov et al. (2007) (CHT) develop a general theory of estimation and inference using the level-
set of a criterion function. We establish a dual relationship between the level-set estimator and its
support function and show that the properly normalized support function provides alternativeWald-type
inference methods. These methods can be used to obtain confidence sets for ΘI and points inside it. For
models with finitely many moment inequalities, we show that our Wald-type statistic is asymptotically
equivalent to CHT’s statistic under regularity conditions.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Statistical inference for partially identified economic models is
a growing field in econometrics. The fieldwas pioneered by Charles
Manski in the 1990s (SeeManski, 2003 and the references therein),
and there have since been substantial theoretical extensions and
applications. In this literature, the economic structures of interest
are characterized by an identified set ΘI , rather than by a single
point in the parameter space Θ ⊂ Rd, d ∈ N. Elements of the
identified set lead to observationally equivalent data generating
processes. A sample of data generated by any of the parameter
values in the identified set, therefore, gives us information about
the identified set, but not about the underlying ‘‘true’’ parameter
value generating the observed data.

Chernozhukov et al. (2007) (CHT) study estimation and sta-
tistical inference on ΘI within a general extremum estimation
framework. CHT have shown that a level-set estimator based on a
properly chosen sequence of levels for the criterion function con-
sistently estimates the identified set, defined as a set of minimiz-
ers. They use a quasi-likelihood ratio (QLR) statistic to construct a
confidence set that asymptotically covers the identified set with at
least a prespecified probability. This criterion function approach is
applicable to a broad class of problems.

Another common approach is to estimate the boundary of ΘI
directly. This is an attractive alternative if the boundary of the
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identified set is easily estimable. Recent studies show thatwhenΘI
is a compact convex set, its support function provides a tractable
representation by summarizing the location of the supporting hy-
perplanes of ΘI . (Beresteanu and Molinari, 2008 (BM); Bontemps
et al., 2012). So far, the criterion function approach and the support
function approach have been viewed as distinct. Each has its ad-
vantages and challenges. The criterion function approach is widely
applicable, but constructing the level set can be computationally
demanding. The support function approach, on the other hand, is
more direct and computationally tractable for some problems, but
it has been applied to a limited class of models when parame-
ters are multi-dimensional. A main contribution of this paper is to
unify these approaches within a general framework. We do this by
studying an inference method that is based on the support func-
tion of a level set estimator. To the best of our knowledge, this is
the first such effort.

In this paper, we focus on econometric models with compact
convex identified sets, which enables us to characterize the
identified set by its support function.1 This class includes many
econometric models studied recently, e.g., regression with interval
data (Manski and Tamer, 2002; Magnac and Maurin, 2008), a class
of discrete choicemodels (Pakes, 2010), consumer demandmodels
with unobserved heterogeneity (Blundell et al., 2014), and an asset
pricing model in incomplete markets (Kaido and White, 2009).
Following CHT, our estimator of ΘI is the level set Θ̂n = {θ :

1 Our analysis applies to the convex hull of the identified set if it is nonconvex.
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Qn(θ) ≤ tn} of a criterion functionQn(·) for some sequence of levels
{tn}. The support function approach provides a straightforward
algorithm to compute the boundary of this estimator. Specifically,
we propose to solve the optimization problem maxQn(θ)≤tn⟨p, θ⟩

for each p. This yields the support function s(·, Θ̂n) of the set
estimator as a value function and also gives the boundary of Θ̂n.
The optimization is a convex programming problem, which can be
solved using standard algorithms.

The estimated support function can also be used to conduct in-
ference. Using a dual relationship between the criterion function
and support function, we first show that the asymptotic distri-
bution of the properly normalized (centered and scaled) support
function is that of a specific stochastic process on the unit sphere.
The normalized support function lets us make various types of in-
ference for ΘI and points in ΘI . For example, as shown in BM, the
normalized support function allows one to construct a confidence
set that covers the identified set with at least some prescribed con-
fidence level. Further, one may test whether ΘI includes a specific
point, i.e., H0 : θ0 ∈ ΘI using a test statistic based on the esti-
mated support function. We contribute to the literature by estab-
lishing the asymptotic distribution of this statistic. Specifically, our
asymptotic distribution result generally holds even if the identified
set has kink points and thus extends the result of Bontemps et al.
(2012). This test can be inverted to construct a confidence set for
each point in the identified set.

Our work is related to the work of BM who first studied
inference based on estimated support functions for the case
where ΘI is a linear transformation of the Aumann expectation
of set-valued random variables and Bontemps et al. (2012) who
consider a confidence set for a point in the identified set, when
ΘI is characterized by incomplete linear moment restrictions. Our
analysis further contributes to this line of research by extending
these results to the general setting where ΘI is the set of
minimizers of a convex criterion function.

We apply themain results to econometricmodels characterized
by finitely many moment inequalities. This class has been exten-
sively studied recently (see references in Section 4). We contribute
to this literature by establishing a new equivalence result within
this class. OurWald-type statistic (squared directed Hausdorff dis-
tance) and CHT’s QLR statistic converge in distribution to the same
limit under some regularity conditions. As a result, theWald confi-
dence set, a set obtained by expanding the set estimator by a suit-
able critical value, is asymptotically equivalent to CHT’s confidence
set, a level set whose level is a specific quantile of the QLR statistic.

The paper is organized as follows. In Section 2, we summarize
CHT’s econometric framework and introduce some useful back-
ground.Weestablish the asymptotic distribution of thenormalized
support function and develop our inference methods in Section 3.
Section 4 studies moment inequality models. We present Monte
Carlo simulation results in Section 5 and conclude in Section 6. We
collect our mathematical proofs in the Appendix.

Throughout, we use the following notation. Let R+ := [0, ∞)
and R̄+ := R+ ∪ {∞}. For any closed set A ⊆ Rd, let ∂A denote
its boundary, and let Ao denote its interior. For any x, y ∈ Rd, let
⟨x, y⟩ denote the inner product of x and y, and let ∥x∥ denote the
Euclidean norm of x. We let Sd−1

= {x ∈ Rd
: ∥x∥ = 1} denote the

unit sphere in Rd, and C(Sd−1) is the set of continuous functions
on Sd−1. Finally, for any J × J matrix w and vector y ∈ RJ , we let
∥wy∥+ := ∥w(y ◦ 1{y ≥ 0})∥, where ◦ denotes the entrywise
product.

2. General setup

2.1. Criterion functions and set estimator

We start with introducing criterion functions and high level
conditions (Assumptions 2.1–2.3) based on the conditions in CHT.

Our first assumption is on the data generating process (DGP),
parameter space, and the criterion functions.

Assumption 2.1. (i) Let (Ω, F, P) be a complete probability space.
Let d ∈ N, and let Θ ⊆ Rd be a compact and convex parameter
space with a nonempty interior; (ii) Let Q : Rd

→ R̄+ be a
lower semicontinuous (lsc) function; (iii) For n = 1, 2, . . . , let
Qn : Ω × Rd

→ R̄+ be a jointly measurable function such that
Qn(ω, θ) < ∞ for at least one θ ∈ Θ , Qn(ω, θ) = ∞ for all θ ∉ Θ ,
and θ → Qn(ω, θ) is lsc with probability 1.

Compactness is a standard assumption on Θ for extremum
estimation. The function Qn acts as our sample criterion function.
For example, a commonly used criterion function for moment
inequality models is

Qn(ω, θ) =

Ŵ 1/2
n (ω, θ)

1
n

n
i=1

m(Xi(ω), θ)


2

+

, (2.1)

where m(x, θ) is a vector-valued function such that E[m(Xi, θ)] ≤

0 for one ormore values of θ , and Ŵn is a weightingmatrix that can
depend on the sample. For simplicity, wewriteQn(θ) below, but its
dependence onω should be understood implicitly. The function Q
is the population criterion function. Without loss of generality, we
normalize the minimum value of Q to 0. Following CHT, we then
define the identified set as the set of minimizers of Q :

ΘI := {θ ∈ Θ : Q (θ) = 0}. (2.2)

Throughout, we assume that ΘI is a non-empty subset of Θ . The
set estimator of ΘI is then defined as a level-set of Qn. We also
normalize Qn so that the minimum of Qn is 0. For a non-negative
sequence {tn} ⊂ R+ and a positive sequence {an} ⊂ R+, the set
estimator is defined by

Θ̂n(tn) := {θ ∈ Θ : anQn(θ) ≤ tn}. (2.3)

For any a ∈ Rd and closed set B ⊆ Rd, let d(a, B) := infb∈B ∥a− b∥.
For any closed subsets A, B of Rd, let

dH(A, B) := max

d⃗H(A, B), d⃗H(B, A)


,

d⃗H(A, B) := sup
a∈A

d(a, B), (2.4)

where dH and d⃗H are the Hausdorff and directed Hausdorff
distances respectively. The following assumptions based on CHT’s
conditions C.1–C.3 are general enough to be satisfied by many
examples involving inequality constraints.

Assumption 2.2. (i) supθ∈Θ{Q (θ) − Qn(θ)}+ = op(1). (ii) supθ∈ΘI
Qn(θ) = Op(1/an). (iii) There exist positive constants (δ, κ, γ )

such that for any ϵ ∈ (0, 1), there are (κϵ, nϵ) such that for all
n ≥ nϵ

Qn(θ) ≥ κ min{d(θ, ΘI), δ}
γ ,

uniformly on {θ ∈ Θ : d(θ, ΘI) ≥ (κϵ/an)1/γ } with probability at
least 1 − ϵ.

Assumption 2.3 (Degeneracy). (i) There is a sequence of subsets
Θn of Θ , which could be data dependent such that Qn vanishes on
these subsets, that is, Qn(θ) = 0 for each θ ∈ Θn, for each n, and
these sets can approximate the identified set arbitrarily well in the
Hausdorff metric, that is, dH(Θn, ΘI) ≤ ϵn for some ϵn = op(1). (ii)
ϵn = Op(a

−1/γ
n ).
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