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a b s t r a c t

This paper proposes a new model for high-dimensional distributions of asset returns that utilizes mixed
frequency data and copulas. The dependence between returns is decomposed into linear and nonlinear
components, enabling the use of high frequency data to accurately forecast linear dependence, and a
new class of copulas designed to capture nonlinear dependence among the resulting uncorrelated, low
frequency, residuals. Estimation of the new class of copulas is conducted using composite likelihood,
facilitating applications involving hundreds of variables. In- and out-of-sample tests confirm the
superiority of the proposed models applied to daily returns on constituents of the S&P 100 index.
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1. Introduction

Amodel for themultivariate distribution of the returns on large
collections of financial assets is a crucial component inmodern risk
management and asset allocation. Modelling high-dimensional
distributions, however, is not an easy task and only a few models
are typically used in high dimensions, most notably the Normal
distribution, which is still widely used in practice and academia
despite its notorious limits, for example, thin tails and zero tail
dependence.

This paper provides a new approach for constructing and
estimating high-dimensional distribution models. Our approach
builds on two active areas of recent research in financial econo-
metrics. First, high frequency data has been shown to be superior
to daily data for measuring and forecasting variances and covari-
ances, see Andersen et al. (2006) for a survey of this very active area

✩ We thank the guest editor (Eric Ghysels), two anonymous referees, and
Tim Bollerslev, Federico Bugni, Jia Li, Oliver Linton, Bruno Rémillard, Enrique
Sentana, Neil Shephard, and George Tauchen as well as seminar participants at the
Federal Reserve Board, Rutgers University, SUNY-Stony Brook, Toulouse School of
Economics, University of Cambridge, and University of Montreal for their insightful
comments. We also benefited from data mainly constructed by Sophia Li and Ben
Zhao. The views expressed in this paper are those of the authors and do not
necessarily reflect those of the Federal Reserve Board.
∗ Corresponding author.

E-mail addresses: donghwan.oh@frb.gov (D.H. Oh), andrew.patton@duke.edu
(A.J. Patton).

of research. This implies that there are gains to be had by mod-
elling linear dependence, as captured by covariances, using high
frequency data. Second, copula methods have been shown to be
useful for constructing flexible distribution models in high dimen-
sions, see Christoffersen et al. (2013), Oh and Patton (2016) and
Creal and Tsay (2014). These two findings naturally lead to the
question of whether high frequency data and copula methods can
be combined to improve the modelling and forecasting of high-
dimensional return distributions.

Exploiting high frequency data in a lower frequency copula-
based model is not straightforward as, unlike variances and
covariances, the copula of low frequency (say daily) returns is
not generally a known function of the copula of high frequency
returns. Thus the link between high frequency volatility measures
(e.g., realized variance and covariance) and their low frequency
counterparts cannot generally be exploited when considering
dependence via the copula function. We overcome this hurdle by
decomposing the dependence structure of low frequency asset
returns into linear and nonlinear components. We then use high
frequency data to accurately model the linear dependence, as
measured by covariances, and a new class of copulas to capture
the remaining dependence in the low frequency standardized
residuals.

The difficulty in specifying a copula-based model for standard-
ized, uncorrelated, residuals, is that the distribution of the resid-
uals must imply an identity correlation matrix. Independence is
only sufficient for uncorrelatedness, and we wish to allow for
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possible nonlinear dependence between these linearly unrelated
variables. Among existing work, only the multivariate Student’s
t distribution has been used for this purpose, as an identity cor-
relation matrix can be directly imposed on this distribution. We
dramatically increase the set of possible models for uncorrelated
residuals by proposing methods for generating ‘‘jointly symmet-
ric’’ copulas. These copulas can be constructed fromany given (pos-
sibly asymmetric) copula, and when combined with any collection
of (possibly heterogeneous) symmetricmarginal distributions they
guarantee an identity correlation matrix. Evaluation of the density
of our jointly symmetric copulas turns out to be computationally
difficult in high dimensions, but we show that composite likeli-
hood methods (see Varin et al., 2011 for a review) may be used
to estimate the model parameters and undertake model selection
tests.

This paper makes four main contributions. Firstly, we propose
a new class of ‘‘jointly symmetric’’ copulas, which are useful
in multivariate density models that contain a covariance matrix
model (e.g., GARCH–DCC, HAR, stochastic volatility, etc.) as a
component. Second, we show that composite likelihood methods
may be used to estimate the parameters of these new copulas, and
in an extensive simulation studyweverify that thesemethods have
good finite-sample properties. Third, we propose a new and simple
model for high-dimensional covariance matrices drawing on ideas
from the HAR model of Corsi (2009) and the DCC model of Engle
(2002), and we show that this model outperforms the familiar
DCC model empirically. Finally, we present a detailed empirical
application of our model to 104 individual U.S. equity returns,
showing that our proposed approach significantly outperforms
existing approaches both in-sample and out-of-sample.

Our methods and application are related to several existing
papers. Most closely related is the work of Lee and Long (2009),
who also consider the decomposition into linear and nonlinear
dependence, and use copula-based models for the nonlinear
component. However, Lee and Long (2009) focus only on bivariate
applications, and their approach, which we describe in more detail
in Section 2, is computationally infeasible in high dimensions.
Our methods are also clearly related to copula-based density
models, some examples of which are cited above, however in those
approaches only the variances are modelled prior to the copula
stage, meaning that the copula model must capture both the linear
and nonlinear components of dependence. This makes it difficult
to incorporate high frequency data into the dependence model.
Papers that employ models for the joint distribution of returns
that include a covariance modelling step include Chiriac and Voev
(2011), Jondeau and Rockinger (2012), Hautsch et al. (2015), and
Jin and Maheu (2013). As models for the standardized residuals,
those papers use the Normal or Student’s t distributions, both of
which are nested in our class of jointly symmetric models, and
which we show are significantly beaten in our application to U.S.
equity returns.

The paper is organized as follows. Section 2 presents our
approach for modelling high-dimensional distributions. Section 3
presents multi-stage, composite likelihood methods for model
estimation and comparison, which are studied via simulations in
Section 4. Section 5 applies our model to daily equity returns
and compares it with existing approaches. Section 6 concludes.
An appendix contains all proofs, and a web appendix contains
additional details, tables and figures (see Appendix A).

2. Models of linear and nonlinear dependence

We construct a model for the conditional distribution of the
N-vector rt as follows:

rt = µt + H1/2
t et (1)

where et ∼ iid F (·; η) (2)

where F (·; η) is a joint distribution with zero mean, identity co-
variance matrix and ‘‘shape’’ parameter η, and µt = E [rt |Ft−1],
Ht = V [rt |Ft−1], Ft = σ (Yt , Yt−1, . . .), and Yt includes rt and
possibly other time t observables, such as realized variances and
covariances. To obtain H1/2

t , we suggest using the spectral decom-
position due to its invariance to the order of the variables. Note
that by assuming that et is iid, we impose that all dynamics in the
conditional joint distribution of rt are driven by the conditional
mean and (co)variance. This common, and clearly strong, assump-
tion goes some way towards addressing the curse of dimensional-
ity faced when N is large.

In existing approaches, see Chiriac and Voev (2011), Jondeau
and Rockinger (2012), Hautsch et al. (2015), and Jin and Maheu
(2013) for example, F would be assumed multivariate Normal
(which reduces to independence, given that et has identity covari-
ance matrix) or Student’s t , and the model would be complete. In-
stead, we consider the decomposition of the joint distribution F
intomarginal distributions Fi and copula C using Sklar’s (1959) the-
orem:

et ∼ F (·; η) = C (F1 (·; η) , . . . , FN (·; η) ; η) . (3)

Note that the elements of et are uncorrelated but may still exhibit
cross-sectional dependence, which is completely captured by the
copula C. Combining Eqs. (1)–(3) we obtain the following density
for the distribution of returns:

ft (rt) = det

H−1/2

t


× c (F1 (e1t) , . . . , FN (eNt))×

N
i=1

fi (eit) . (4)

Thus this approach naturally reveals two kinds of dependence be-
tween returns: ‘‘linear dependence,’’ captured by conditional co-
variance matrix Ht , and any ‘‘nonlinear dependence’’ remaining
in the uncorrelated residuals et , captured by the copula C. There
are two important advantages in decomposing a joint distribution
of returns in this way. First, it allows the researcher to draw on
the large literature on measuring, modelling and forecasting con-
ditional covariance matrix Ht with low and high frequency data.
For example, GARCH-type models such as the multivariate GARCH
model of Bollerslev et al. (1988), the BEKKmodel of Engle and Kro-
ner (1995), and the dynamic conditional correlation (DCC)model of
Engle (2002) naturally fit in Eqs. (1) and (2). The increasing avail-
ability of high frequency data also enables us to use more accu-
ratemodels for the conditional covariancematrix, see, for example,
Bauer and Vorkink (2011), Chiriac and Voev (2011), and Noureldin
et al. (2012), and those models are also naturally accommodated
by Eqs. (1)–(2).1 Second, the model specified by Eqs. (1)–(3) is eas-
ily extended to high-dimensional applications given that multi-
stage separate estimation of the conditional mean of the returns,
the conditional covariance matrix of the returns, the marginal dis-
tributions of the standardized residuals, and finally the copula of
the standardized residuals is possible. Of course, multi-stage es-
timation is less efficient than one-stage estimation, however the
main difficulty in high-dimensional applications is the prolifera-
tion of parameters and the growing computational burden as the
dimension increases. By allowing for multi-stage estimation we
overcome this obstacle.

1 In the part of our empirical work that uses realized covariance matrices, we
take these as given, and do not take a stand on the specific continuous-time process
that generates the returns and realized covariances. This means that, unlike a DCC-
type model, for example, which only considers daily returns, or a case where the
continuous-time process was specified, we cannot simulate or generate multi-step
ahead predictions from these models.
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