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a b s t r a c t

For the purpose of forecasting key macroeconomic or financial variables from a panel of time series
variables, we adopt the dynamic factor model and propose a weighted likelihood-based method for
parameter estimation. The loglikelihood function is split into two parts that are weighted differently. The
first part is associatedwith the key variables while the second part is associatedwith the related variables
which may contribute to the forecasting of key variables. We derive asymptotic properties, including
consistency and asymptotic normality, of the weighted maximum likelihood estimator. We show that
this estimator outperforms the standard likelihood-based estimator in approximating the true unknown
distribution of the data as well as in out-of-sample forecasting accuracy. We verify the new estimation
method in a Monte Carlo study and investigate the role of different weights in different settings. In the
context of forecasting gross domestic product growth, this key variable is typically observed at a low
(quarterly) frequency while the supporting variables are observed at a high (monthly) frequency. We
adopt a low frequency representation of the mixed frequency dynamic factor model and discuss the
computational efficiencies of this approach. In our empirical study for the U.S. economy, we present
improvements in nowcasting and forecasting accuracy when the weighted likelihood-based estimation
procedure is adopted.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The forecasting of macroeconomic and financial time series
variables is of key importance for economic policymakers. Reliable
forecasts are especially in high demand when the economic
environment is uncertain as we have witnessed in the years
during and after the financial crisis. Many different model-
based approaches exist for this purpose, ranging from basic time
series models to sophisticated structural dynamic macroeconomic
models. The underlying idea of the dynamic factor model is to
associate a relatively small set of factors to a high-dimensional
panel of economic variables that includes the variables of interest
and related variables. The dynamic factor model has become a
popular tool for the forecasting of the variable of interest, amongst
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practitioners and econometricians. This ismainly due to their good
forecast performance as shown in many studies.

The dynamic factor model can be viewed as a high-dimensional
linear state space model. The estimation of the parameters in a
dynamic factor model is a challenging task given the large num-
ber of parameters, mostly due to factor loading coefficients. A
likelihood-based approach in which the Gaussian likelihood func-
tion is evaluated via the Kalman filter and is numerically maxi-
mized with respect to the parameter vector has been originally
proposed by Engle and Watson (1981) for a model with one dy-
namic factor. Watson and Engle (1983) base their estimation pro-
cedure on an expectation–maximization (EM) algorithm; see also
Quah and Sargent (1993). More recently, feasible two-step ap-
proximate likelihood-based procedures are developed by Doz et al.
(2011) and Bańbura and Modugno (2014). In Bräuning and Koop-
man (2014) and Jungbacker and Koopman (2015), specific data
transformations are considered to facilitate the parameter estima-
tion for high-dimensional dynamic factor models. In this study, we
restrict ourselves to likelihood-based estimation procedures.
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Weighted likelihood-based estimation
To address the notion that a single variable or a small selection

of variables in a dynamic factor model is of key importance while
all other variables can be regarded as instruments, we present a
weighted likelihood-based estimation procedure for the purpose
of providing a more accurate forecasting performance than
obtained from a standard maximum likelihood procedure. Our
proposed weighted maximum likelihood estimator gives simply
more weight to the likelihood contribution from the variable of
interest. As an example, for the nowcasting and forecasting of
quarterly growth in gross domestic product, referred to as GDP
growth, more weight can be given to the likelihood contribution
from GDP growth in comparison to the contribution from the
related variables that are included in the dynamic factor model.

The variable-specific weights introduced by our weighted ML
estimator differ from other weighted ML estimators proposed in
the literature. In most other cases, observation-specific weights
in the likelihood function are considered. The local ML estimators
studied in Tibshirani and Hastie (1987), Staniswalis (1989)
and Eguchi and Copas (1998) assign a weight to each observation
that depends on the distance to a given fixed point. The robust
ML estimator of Markatou et al. (1997, 1998) down-weights
observations that are inconsistent with the postulated model.
Similarly, Hu and Zidek (unpublished) devise a general principle of
relevance that assigns different weights to different observations
in an ML setting. In small samples, this type of estimator
can provide important gains in the trade-off between bias and
precision of theML estimator. The large sample properties of these
estimators are established in Wang et al. (2004) for given weights,
and Wang and Zidek (2005) provide a method for estimating
the weights based on cross-validation. In contrast we propose a
weighted ML estimator that gives higher weight to a subset of a
random vector, that is to an entire random scalar sequence within
the multivariate stochastic process.

We discuss the asymptotic properties of our weighted max-
imum likelihood estimator and we show that the estimator is
consistent and asymptotically normal. We also verify our new ap-
proach in a Monte Carlo study to investigate the effect of different
choices for theweights in different scenarios. In an empirical study
concerning the nowcasting and forecasting of U.S. GDP growth, we
adopt the weighted likelihood function for the estimation of pa-
rameters in a mixed frequency dynamic factor model.

Mixed Frequency
In empirical studies, the dynamic factor model requires further

modifications to handle mixed frequency data; Mariano and
Murasawa (2003) have been the first to illustrate how a small-
scale dynamic factor model for the U.S. economy can be adapted
for mixed frequency data. Their model is formulated in state
space form with a monthly time index. The monthly and quarterly
variables are dependent on a commonmonthly dynamic factor and
on idiosyncratic dynamic components. For the quarterly variable
of interest, the Kalman filter can treat the missing observations
that occur during the first two months in each quarter. More
generally, any multivariate time series model can be formulated in
terms of a high frequency time index and the periodically missing
observations due to low frequency variables can be accounted for
by theKalman filter.Mittnik and Zadrozny (2005) report promising
results based on this approach for the forecasting of German
growth in GDP.

We consider an alternative approach based on ideas developed
for periodic systems in the control engineering literature; see Bit-
tanti and Colaneri (2000, 2009) The main idea is to formulate the
model with a low frequency time index and collect the observa-
tions for a high frequency variable in a vector. In the case of a
quarterly time index and a monthly variable, the three consecu-
tive monthly observations associated with a specific quarter are

then stacked into a quarterly vector. Both monthly and quarterly
dynamic processes can be formulated in a state space model with
a quarterly time index. We discuss this solution for the mixed fre-
quency dynamic factor model. The advantage of this approach is
that it does not require the handling of missing observations and
it can lead to computational efficiencies. A similar solution is con-
sidered byMarcellino et al. (2014) who propose a Bayesian regres-
sionmodel with stochastic volatility for producing current-quarter
forecasts of GDP growth using many monthly economic variables.
Such ideas are also explored for vector autoregressive systems by
Chen et al. (2012), Ghysels (2012), Foroni et al. (2015) and Ghysels
et al. (forthcoming).

Empirical study
An important application of dynamic factor models is their use

in the forecasting of quarterly GDP growth. A high-dimensional
panel of macroeconomic variables is used to construct factors for
the purpose of facilitating the forecasting of GDP growth. Empirical
evidence is given by, amongst others, Stock and Watson (2002b)
and Giannone et al. (2008) for the U.S., Marcellino et al. (2003)
and Rünstler et al. (2009) for the euro area, and Schumacher and
Breitung (2008) for Germany. Inmany of these and related studies,
the problem of mixed frequency data arises since the variable of
interest GDP growth is observed at a quarterly frequency while
the other macroeconomic variables are observed at a monthly
frequency. The treatment of mixed frequency data in a dynamic
factor model is therefore a highly relevant issue in forecasting,
nowcasting and backcasting GDP growth; see also the discussions
in Bańbura et al. (2013).

In our empirical study for the U.S. economy, we consider three
small- to medium-sized mixed frequency dynamic factor models
with the purpose of forecasting quarterly U.S. GDP growth. The
first model is a five-dimensional model similar to Mariano and
Murasawa (2003), the second model is a fourteen-dimensional
model similar to Bańbura et al. (2013) and the third model is a
six-dimensional model similar to Aruoba et al. (2009). The first
two models have only monthly related variables while the last
model also includes a weekly related variable. For almost all cases,
we present improvements in nowcasting and forecasting accuracy
when parameters are estimated by the weighted maximum
likelihood method.

Outline
The outline of the paper is as follows. In Section 2 we present

our weighted maximum likelihood approach that is introduced
to increase the influence of the key variables in the estimation
process for a joint multivariate dynamic model. Asymptotic
properties of the resulting estimator are derived and we explore
its small-sample properties in a Monte Carlo study. In Section 3
we show how mixed frequency dynamic factor models can be
specified as observationally equivalent low frequency dynamic
factor models. In many cases the low frequency formulations
lead to computational gains. In Section 4 we present and explore
the results of our empirical study concerning U.S. GDP growth.
We compare the nowcasting and forecasting accuracies of our
new approach for the three different dynamic factor models. We
also establish the empirical relevance of the weighted estimation
method of Section 2. Section 5 summarizes and concludes.

2. Weighted maximum likelihood: method and properties

We represent our high-dimensional panel of time series as
the column vector zt for which we have observations from t =

1, . . . , T where T is the overall time series length. We decompose
zt into variables of interest in yt and related variables in xt , we have
zt = (y′

t , x
′
t)

′ where a′
t is the transpose of column vector at . The

dimension Ny of yt is small and typically equal to one while the
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