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a b s t r a c t

We propose conditions under which parameters of fixed-effect dynamic models are identified with
unequally spaced panel data. Under predeterminedness, weak stationarity, and empirically testable rank
conditions, AR(1) parameters are identified given the availability of ‘‘two pairs of two consecutive time
gaps’’, which generalizes ‘‘two pairs of two consecutive time periods’’. This result extends to models with
multiple covariates, higher-order autoregressions, and partial linearity. Applying our method to the NLS
Original Cohorts: Older Men, where personal interviews took place in 1966, 67, and 69, we analyze the
earnings dynamics in the old time, and compare the results with more recent ones.
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1. Introduction

In economics, numerous empirical questions have been an-
swered through the dynamic panel data model of the form

yit = γ yi,t−1 + βxit + αi + εit , (1.1)

where yit is an observed state variable, xit is an observed covari-
ate, αi is an unobserved individual fixed effect, and εit is an id-
iosyncratic error. Among others, method-of-moment approaches
(e.g., Anderson and Hsiao, 1981; Arellano and Bond, 1991) enjoy
practical and theoretical advantages to attract a large group of
users. Thesemethods exploit the instrumental orthogonality of the
first difference εit − εi,t−1 = (yit − yi,t−1) − γ (yi,t−1 − yi,t−2) −

β(xit −xi,t−1) aswell as other supplementarymoment restrictions.
As such, they require observation of yit for at least three consec-
utive time periods (or alternatively two pairs of two consecutive
time periods).

Many panel surveys are conducted with unequal time spacing,
and may not provide the required set of time periods. For the
NLS Original Cohorts: Older Men, for example, personal interviews
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were conducted in 1966, 67, 69, 71, 76, 81, and 90.1 This data
set contains neither three consecutive time periods nor two pairs
of two consecutive time periods. We thus fail to difference out
the fixed effect from Eq. (1.1), and cannot directly adapt the
aforementioned approaches to construct moment restrictions.

Given that the standardmethod-of-moment approaches are not
generally effective once panel data exhibit unequal time spacing,
can we develop similarly useful alternative estimation methods?
Through this paper, we answer this question by providing
conditions under which parameters (γ , β) of the model (1.1) are
identified even if panel data are unequally spaced. In addition to
the relatively standard assumptions such as predeterminedness,
weak stationarity, and empirically testable rank conditions, we
require certain patterns of unequal time spacing for the parameters
to be identified. It is also shown that many of the unequally spaced
panel data sets from the US and the UK satisfy our requirement of
spacing patterns.

We are not the first to study unequally spaced panel data.
Rosner and Munoz (1988) use linear interpolation to approximate
missing data for dynamic panel models. Jones and Boadi-Boateng
(1991) take the parametric maximum likelihood solution for
static panel models with serial correlation. Baltagi and Wu (1999)
propose a feasible GLS procedure for static panel models with

1 They conducted mail or telephone interviews in 1968, 73, 75, 78, 80, and
83, but responses through different media of communication should be carefully
distinguished for survey analysis.
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serial correlation. McKenzie (2001) shows consistent estimation
of dynamic (pseudo) panel models, but this method requires
observation of covariates in the missing time periods. Millimet
and McDonough (2013) apply a variety of estimation methods
and report their finite sample performances. They also provide
a comprehensive survey of panel data with unequal spacing in
Australia, Canada, France, Japan, UK and USA. A more recent paper
by Pacini and Windmeijer (2015) considers the AR(1) model with
randomly missing outcomes, where they assume that covariates
are always observed or are absent from the model.

This paper differs from these preceding papers in terms
of the following six points. First, most importantly, we show
identification, and specifically propose general spacing patterns
as sufficient conditions for identification. Second, we deal with
dynamic models which exhibit more complications than static
models. Third, parametric distributional assumptions are not
imposed. Fourth, our approach does not rely on interpolation or
imputation. Fifth, our method can allow for arbitrarily correlated
covariates and does not require partial observation inmissing time
periods. Sixth, ourmodel can allow for arbitrary correlation among
the observed state, the unobserved fixed effect, and the observed
covariates.

With all these advantages, we admit that our identification
result is based on a non-trivial set of assumptions. As mentioned
earlier, we assume predeterminedness and weak stationarity.
While predeterminedness is often innocuous in applications, the
weak stationarity can be restrictive in some applications. We
discuss advantages and disadvantages of this assumption. Our rank
condition is empirically testable, and can also be handled by the
existing methods of weak-rank-robust inference.

Our key requirement for identification is the availability of ‘‘two
pairs of two consecutive time gaps’’, which is a generalization of
‘‘two pairs of two consecutive time periods’’. None of the preceding
papers proposes such general spacing patterns as sufficient
(or necessary) condition for identification. This requirement is
satisfied with time gaps {0, 1} and {1, 2} serving as two pairs of
two consecutive time gaps for theNLSOriginal Cohorts: OlderMen,
which we picked as an example earlier. This paper contributes to
the body of our knowledge andprovides a guidance to practitioners
by formally ensuring identification of dynamic fixed-effect models
under the stylized patterns of unequally spaced panel data.

2. A basic model

We first fix index notations for unequally spaced panel data.
Let T be the set of all observed time periods. Define the set of
survey gaps by T = {|t1 − t2| : t1, t2 ∈ T }. Also define the set
of gap-associated survey years by T (τ ) = {t ∈ T : t + τ ∈ T }

for each gap τ ∈ T , and let T (τ ) = ∅ if τ ∉ T . For the NLS
Original Cohorts: Older Men, introduced in the previous section,
personal interviews were conducted in 1966, 67, 69, 71, 76, 81,
and 90. In this case, we have T = {66, 67, 69, 71, 76, 81, 90},
T = {0, 1, 2, 3, 4, 5, 7, 9, 10, 12, 14, 15, 19, 21, 23, 24}, T (0) =

T , T (1) = {66}, T (2) = {67, 69}, T (3) = {66}, T (4) = {67},
T (5) = {66, 71, 76}, and so on.

Let us first consider the following simple first-order autoregres-
sive model for illustration

yit = γ yi,t−1 + βxit + αi + εit (2.1)

where yit is an observed state variable, xit is an observed covariate,
αi is an unobserved individual fixed effect, and εit is an unobserved
idiosyncratic shock for individual i at period t . This baseline
model has two parameters, γ and β . Our model, allowing for an
arbitrary correlation among the observed state, the unobserved
fixed effect, and the observed covariates, generalizes the model
of Millimet and McDonough (2013), where xit is required to be

strictly exogenous and serially uncorrelated for consistency, and
the model of Pacini and Windmeijer (2015), where covariates
treated separately for consistency. With this said, we will invoke
a time invariance assumption below that was not used by them.
We introduce the short-hand notation, Ei(·) := E(·|αi), for the
expectation conditional on individual i’s specific heterogeneity.
The dynamic process (2.1) is equipped with the following set of
model assumptions.

Assumption 1 (Predeterminedness). Ei(yitεis) = 0 and Ei(xitεis) =

0 whenever s > t .

Assumption 2 (Time Invariance). For each individual i = 1, 2,
. . . ,N and τ ≥ 0:

(i) Ei(yi1yi,1+τ ) = · · · = Ei(yityi,t+τ ) = · · · = Ei(yi,T−τyiT ).
(ii) Ei(xi1xi,1+τ ) = · · · = Ei(xitxi,t+τ ) = · · · = Ei(xi,T−τ xiT ).
(iii) Ei(yi1xi,1+τ ) = · · · = Ei(yitxi,t+τ ) = · · · = Ei(yi,T−τ xiT ).
(iv) Ei(xi1yi,1+τ ) = · · · = Ei(xityi,t+τ ) = · · · = Ei(xi,T−τyiT ).

The predeterminedness assumption based on Ei requires the
individual-level moment equalities E(yitεis|αi) = E(xitεis|αi) = 0
to hold for any s > t . By the law of iterated expectation, this im-
plies E(yitεis) = E(xitεis) = 0 for s > t . Unlike the usual exogeneity
conditions assumed in the panel data literature, our assumption is
based only on the individual-level moments Ei(·) and the moment
equalities need not hold for s = t , but it suffices for the purpose of
identification as formally argued below. If we substitute stronger
conditions such as Ei(xitεis) = 0 for all s ≥ t or the strict exogene-
ity, then with more data availability we can possibly gain identifi-
cation power and efficiency throughmoremoment conditions.We
also remark that the empirical testability of the predeterminedness
in general requires exogenous instruments.

Conditions in Assumption 2 are satisfied when the variables
are weakly stationary. In light of this assumption, we can define
auxiliary random variables Ziτ := Ei(yityi,t+τ ), ziτ := Ei(xitxi,t+τ ),
ζiτ := Ei(yitxi,t+τ ) and ζi,−τ := Ei(xityi,t+τ ), which do not depend
on t .2 For a primitive structural model that sufficiently satisfies
this weak stationarity assumption, one can consider the linear VAR
structure for (yit , xi,t+1) with sub-unit coefficient restrictions for
example, where one of the two equations is (2.1). Note that our as-
sumption does not require the initial observations to be generated
from the stationary distribution.3 Compared to the existing liter-
ature (e.g., Millimet and McDonough, 2013), the time invariance
assumption is the key to our result. This assumption has both
advantages and disadvantages. On one hand, it facilitates the
identification that we establish under unequal spacing and arbi-
trary correlation among the observed state, the unobserved fixed
effect, and the observed covariates that are neither strictly exoge-
nous nor serially uncorrelated. It also allows us to gain identifi-
cation power and efficiency in traditional settings—see Example 4
for detailed discussions. On the other hand, this assumption can be
too restrictive for certain applications, particularly with state vari-
ables that grow or accumulate over time. In addition, time-series
heteroskedasticity, which is usually allowed in existing estimation
methods for equally spaced panels, is excluded by this assumption.

2 We introduce these auxiliary variables only for the sake of making equations
shorter, but they are not necessary for the substance of our formal discussions.
3 To see this, observe that Assumption 2 allows the initial observations in a pure

AR(1) model to take the general form of yi0 = δ


αi
1−γ


+εi0 with εi0 ∼ N(0, σ 2

ε

1−γ 2 ).
Within this general framework, on the other hand, a stationary initial distribution
specifically requires δ = 1.
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