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1. Introduction

Quantiles contain information about a distribution’s shape.
Complementing the mean, they capture heterogeneity, inequality,
and other measures of economic interest. Nonparametric condi-
tional quantile models further allow arbitrary heterogeneity across
regressor values. This paper concerns nonparametric inference on
quantiles and conditional quantiles. In particular, we characterize
the high-order accuracy of both Hutson’s (1999) L-statistic-based
confidence intervals (Cls) and our new conditional quantile CIs.

Conditional quantiles appear across diverse topics because
they are fundamental statistical objects. Such topics include
wages (Hogg, 1975; Chamberlain, 1994; Buchinsky, 1994), infant
birthweight (Abrevaya, 2001), demand for alcohol (Manning
et al, 1995), and Engel curves (Alan et al., 2005; Deaton,
1997, pp. 81-82), which we examine in our empirical application.

We formally derive the coverage probability error (CPE) of
the CIs from Hutson (1999), as well as asymptotic power of
the corresponding hypothesis tests. Hutson (1999) had proposed
CIs for quantiles using L-statistics (interpolating between order
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statistics) as endpoints and found they performed well, but formal
proofs were lacking. Using the analytic n~! term we derive in the
CPE, we provide a new calibration to achieve 0(n~3/?[log(n)]?)
CPE, analogous to the Ho and Lee (2005a) analytic calibration of
the CIs in Beran and Hall (1993).

The theoretical results we develop contribute to the fractional
order statistic literature and provide the basis for inference on
other objects of interest explored in Goldman and Kaplan (2016b)
and Kaplan (2014). In particular, Theorem 2 tightly links the distri-
butions of L-statistics from the observed and ‘ideal’ (unobserved)
fractional order statistic processes. Additionally, Lemma 7 provides
Dirichlet PDF and PDF derivative approximations.

High-order accuracy is important for small samples (e.g., for
experiments) as well as nonparametric analysis with small local
sample sizes. For example, if n = 1024 and there are five binary
regressors, then the smallest local sample size cannot exceed
1024/2° = 32.

For nonparametric conditional quantile inference, we apply the
unconditional method to a local sample (similar to local constant
kernel regression), smoothing over continuous covariates and also
allowing discrete covariates. CPE is minimized by balancing the
CPE of our unconditional method and the CPE from bias due to
smoothing. We derive the optimal CPE and bandwidth rates, as
well as a plug-in bandwidth when there is a single continuous
covariate.
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Our L-statistic method has theoretical and computational
advantages over methods based on normality or an unsmoothed
bootstrap. The theoretical bottleneck for our approach is the
need to use a uniform kernel. Nonetheless, even if normality or
bootstrap methods assume an infinitely differentiable conditional
quantile function (and hypothetically fit an infinite-degree local
polynomial), our CPE is still of smaller order with one or two
continuous covariates. Our method also computes more quickly
than existing methods (of reasonable accuracy), handling even
more challenging tasks in 10-15 seconds instead of minutes.

Recent complementary work of Fan and Liu (2016) also
concerns a “direct method” of nonparametric inference on
conditional quantiles. They use a limiting Gaussian process to
derive first-order accuracy in a general setting, whereas we
use the finite-sample Dirichlet process to achieve high-order
accuracy in an iid setting. Fan and Liu (2016) also provide uniform
(over X) confidence bands. We suggest a confidence band from
interpolating a growing number of joint CIs (as in Horowitz and Lee
(2012)), although it will take additional work to rigorously justify.
Adifferent, ad hoc confidence band described in Section 6 generally
outperformed others in our simulations.

If applied to a local constant estimator with a uniform kernel
and the same bandwidth, the Fan and Liu (2016) approach is less
accurate than ours due to the normal (instead of beta) reference
distribution and integer (instead of interpolated) order statistics
in their CI in Eq. (6). However, with other estimators like local
polynomials or that in Donald et al. (2012), the Fan and Liu (2016)
method is not necessarily less accurate. One limitation of our
approach is that it cannot incorporate these other estimators,
whereas Assumption GI(iii) in Fan and Liu (2016) includes any
estimator that weakly converges (over a range of quantiles) to a
Gaussian process with a particular structure. We compare further
in our simulations. One open question is whether using our
beta reference and interpolation can improve accuracy for the
general Fan and Liu (2016) method beyond the local constant
estimator with a uniform kernel; our Lemma 3 shows this at least
retains first-order accuracy.

The order statistic approach to quantile inference uses the
idea of the probability integral transform, which dates back to
R.A. Fisher (1932), Karl Pearson (1933), and Neyman (1937). For

continuous X; % F(), F(Xp) % Unif(0, 1). Each order statistic from
such an iid uniform sample has a known beta distribution for any
sample size n. We show that the L-statistic linearly interpolating
consecutive order statistics also follows an approximate beta
distribution, with only O(n~!) error in CDF. Although O(n™') is an
asymptotic claim, the CPE of the CI using the L-statistic endpoint is
bounded between the CPEs of the CIs using the two order statistics
comprising the L-statistic, where one such CPE is too small and one
is too big, for any sample size. This is an advantage over methods
more sensitive to asymptotic approximation error.

Many other approaches to one-sample quantile inference have
been explored. With Edgeworth expansions, Hall and Sheather
(1988) and Kaplan (2015) obtain two-sided O(n~2/*) CPE. With
bootstrap, smoothing is necessary for high-order accuracy. This
increases the computational burden and requires good bandwidth
selection in practice.! See Ho and Lee (2005b, §1) for a review of
bootstrap methods. Smoothed empirical likelihood (Chen and Hall,
1993) also achieves nice theoretical properties, but with the same
caveats.

Other order statistic-based CIs dating back to Thompson (1936)
are surveyed in David and Nagaraja (2003, §7.1). Most closely

1 For example, while achieving the impressive two-sided CPE of 0(n—3/?), Polan-
sky and Schucany (1997, p. 833) admit, “If this method is to be of any practical value,
a better bandwidth estimation technique will certainly be required”.

related to Hutson (1999) is Beran and Hall (1993). Like Hutson
(1999), Beran and Hall (1993) linearly interpolate order statistics
for CI endpoints, but with an interpolation weight based on the
binomial distribution. Although their proofs use expansions of
the Rényi (1953) representation instead of fractional order statistic
theory, their n~' CPE term is identical to that for Hutson (1999)
other than the different weight. Prior work (e.g., Bickel, 1967;
Shorack, 1972) has established asymptotic normality of L-statistics
and convergence of the sample quantile process to a Gaussian limit
process, but without such high-order accuracy.

The most apparent difference between the two-sided Cls of
Beran and Hall (1993) and Hutson (1999) is that the former are
symmetric in the order statistic index, whereas the latter are equal-
tailed. This allows Hutson (1999) to be computed further into the
tails. Additionally, our framework can be extended to Cls for in-
terquantile ranges and two-sample quantile differences (Goldman
and Kaplan, 2016b), which has not been done in the Rényi repre-
sentation framework.

For nonparametric conditional quantile inference, in addition
to the aforementioned Fan and Liu (2016) approach, Chaudhuri
(1991) derives the pointwise asymptotic normal distribution of a
local polynomial estimator. Qu and Yoon (2015) propose modified
local linear estimators of the conditional quantile process that
converge weakly to a Gaussian process, and they suggest using a
type of bias correction that strictly enlarges a CI to deal with the
first-order effect of asymptotic bias when using the MSE-optimal
bandwidth rate.

Section 2 contains our theoretical results on fractional order
statistic approximation, which are applied to unconditional
quantile inference in Section 3. Section 4 concerns our new
conditional quantile inference method. An empirical application
and simulation results are in Sections 5 and 6, respectively. Proof
sketches are collected in Appendix A, while the supplemental
appendix contains full proofs. The supplemental appendix also
contains details of the plug-in bandwidth calculations, as well as
additional empirical and simulation results (see Appendix B).

Notationally, ¢ (-) and @ (-) are respectively the standard nor-
mal PDF and CDF, = should be read as “is equal to, up to smaller-
order terms”, =< as “has exact (asymptotic) rate/order of”, and
A, = O(Bp) as usual. Acronyms used are those for cumulative dis-
tribution function (CDF), confidence interval (CI), coverage proba-
bility (CP), coverage probability error (CPE), and probability density
function (PDF).

2. Fractional order statistic theory

In this section, we introduce notation and present our core
theoretical results linking unobserved ‘ideal’ fractional L-statistics
with their observed counterparts.

Given an iid sample {X;}! , of draws from a continuous CDF
denoted? F(-), interest is in Q(p) = F~'(p) for some p € (0, 1),
where Q(-) is the quantile function. For u € (0, 1), the sample
L-statistic commonly associated with Q (u) is

Q) = (1 — )X + X1, k= [u(n + 1),

e=u(n+1)—k (1)

where || is the floor function, € is the interpolation weight, and
X,k denotes the kth order statistic (i.e., kth smallest sample value).
While Q (u) is latent and nonrandom, Q)ﬁ(u) is a random variable,

2 F will often be used with a random variable subscript to denote the CDF of that
particular random variable. If no subscript is present, then F(-) refers to the CDF of
X. Similarly for the PDF f (-).
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