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a b s t r a c t

This paper develops identification results employing independence conditions among unobservable
variables. The independence conditions are used to derive first-stage nonseparable reduced form
functions. Once constructed, these reduced form functions are employed to express the derivatives of
nonseparable structural functions in terms of the derivatives of the reduced form functions. For models
with simultaneity, we obtain the new results by combining the independence assumptions together with
parametric specifications and exclusion restrictions. For models with triangularity, we allow all functions
to be nonparametric and nonseparable in unobservable random terms. For the latter, we provide several
equivalence results and discuss someof the trade-offs between observable andunobservable instruments.
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1. Introduction

We consider the use of independence conditions among
unobservable variables as a source of identifying restrictions in
nonparametric models with endogeneity. We show how to exploit
the independence conditions to construct first-stage reduced
form functions, which we then use to identify the derivatives of
nonparametric, nonseparable functions of interest.We develop the
methods for two semiparametricmodelswith simultaneity and for
a nonparametric triangular model.

In linear simultaneous equation models with additive unob-
servable random terms, identification is usually achieved by ex-
clusion restrictions, equality restrictions, or covariance restrictions
(see Hausman (1983) and Hsiao (1983) for surveys). In non-
parametric models with simultaneity, the most commonly used
methods proceed by employing observable variables that are ex-
cluded from the equations of interest, correlated with the en-
dogenous variables, and independent of unobservable random
terms. This limits the possibilities when such instruments are not
observed. Themethods thatwedevelop can be considered as possi-
ble alternatives in such cases, where instruments that can be used
to identify a function of interest are not observed. The model then
becomes one with independence restrictions among unobservable
variables. We consider triangular models with all equations in the
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1 Sections 2 and 5 are based on results previously circulated in theworking paper

entitled ‘‘Unobservable Instruments’’.

system being nonparametric and nonseparable in unobservable
random terms, and simultaneous equationmodelswhere the func-
tion of interest is nonparametric and nonseparable in an unobserv-
able random term, while the other equations in the system are
linear in parameters and additive in unobservable random
terms. The specific restrictions that we impose in the simultane-
ous equations models allow us to derive first-stage reduced form
functions without identifying first the structural function of inter-
est.We can then use those identified reduced form functions in the
sameway as in triangular models, to identify the derivatives of the
function of interest.

The approach developed in this paper to identify triangular and
simultaneous equationsmodels is an extension of Chesher’s (2003)
approach. Chesher (2003) showed how to constructively identify
the derivatives of a nonparametric and nonseparable function in
a triangular model by estimating first stage conditional quantile
functions, given exogenous variables, for the endogenous variables
in the equation of interest. The derivatives of the function of
interest were then obtained as functions of the derivatives of
the conditional quantile functions.2 Instead of using observable
instruments, as in Chesher (2003), we use unobservable ones. We
extend Chesher’s approach to identify functions in simultaneous
equations by identifying reduced form functions using Matzkin
(2003, 2008, 2010, 2015).

2 Previously, using conditional expectations rather than conditional quantiles,
Newey et al. (1999) employed a similar approach to identify a separable
nonparametric function in a triangular model.
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For models with simultaneity, other approaches can also be
used to exploit independence among the unobservable random
terms in a system. Two possible such alternative methods are the
conditional density method (Matzkin, 2007a, 2008, 2010, 2012,
2013, 2015; Berry and Haile, 2014, 2015; Blundell et al., 2013)
and nonparametric IV (Newey and Powell, 2003; Ai and Chen,
2003; Chernozhukov and Hansen, 2005; Hall and Horowitz, 2005;
Darolles et al., 2011; Chen and Pouzo, 2012; Chen et al., 2014,
and several more recent works). Applying these methods would
usually require a different set of assumptions than the ones we use
in this paper.

We consider two models with simultaneity. The first model is
a two equation system. In this system, the equation of interest has
no excluded observable variables, but it includes as one of its argu-
ments an observable variable that can be used as an instrument to
identify the second equation. This allows one to identify the unob-
servable random term of the second equation, which is then used
as an instrument to identify the equation of interest. Hausman and
Taylor (1983) showed identification of the functions in such sys-
tem, through covariance restrictions, when the first and second
functions were linear in parameters and additive in the random
terms. We allow the function of interest to be nonparametric and
nonadditive in the unobservable random term, and show how it
can be identified using the distribution of observable and identified
unobservable variables. As an application, suppose we are inter-
ested in estimating the market demand function for a product. We
observe income of the consumers but possess no observations on
input prices or other variables that could shift the supply equa-
tion. The assumption that those unobserved variables are indepen-
dent of the unobservable in the demand equation would in many
cases be satisfied. In such cases, we could use the method in this
paper to identify an unobservable variable representing the effect
of those unobservable supply shifters, and use them to identify de-
mand using conditional distribution functions.

Our second model is one with three endogenous variables
and no observable exogenous variables. We use the mutual
independence of the unobservable random terms together with
exclusion restrictions in the equations and functional restrictions
in two of the equations to identify a nonadditive function of
interest. The model is a nonparametric extension of the last
example in Hausman and Taylor (1983). In that example, the first
endogenous variable is a linear function of a second endogenous
variable and a random term, the second endogenous variable
is a linear function of a third endogenous variable and another
random term, and the third endogenous variable is a linear
function of the first endogenous variable and another random
term. The model is suitable for analyzing, for example, the actions
of members in a group, where each one is influenced by a different
member of the group. We keep the linear assumptions on two
of the functions but let the third function be nonparametric and
nonadditive. We adapt the methods in Matzkin (2010, Section
4; 2015, Section 4) to identify the unobservable random terms
of the linear equations, employing expressions for the unknown
parameters in the linear functions in terms of logs of the density of
the observable variables. (Matzkin (2016) presentsmore extensive
and general results for identification of parameters in models with
simultaneity.) We then use these two unobservable random terms
to construct reduced-form functions for the endogenous variables
that are used to identify the nonseparable function of interest.

Our results for triangularmodels do not impose either paramet-
ric or separability conditions. We show that conditional indepen-
dence among the unobservable variables in the system, at a unique
value of the conditioning variable, provides identification of the
derivatives of the nonparametric, nonseparable function of inter-
est. An alternative, commonly used, identification method when
independence conditions among the unobservable variables in the

system are not satisfied, is the control function approach (Heck-
man and Robb, 1985). In nonseparable models, this requires an
observable variable that is independent of the vector of unobserv-
able random variables in the system. This observable instrument is
used to identify an unobservable variable, excluded from the equa-
tion of interest. The identified unobservable variable is then used
as an additional conditioning variable in the identification of the
equation of interest. The control function approach has been used
in semiparametric and nonparametric models by Ng and Pinkse
(1995), Newey et al. (1999), Pinkse (2000), Chesher (2003), and Im-
bens and Newey (2009), among others. Florens et al. (2008) con-
sider identification of average treatment effects in models with
continuous endogenous variables using this approach, among oth-
ers. Ma and Koenker (2006) developed quantile regression estima-
tionmethods (originally developed in Koenker and Bassett (1978)).
Blundell and Powell (2004) used this approach to develop estima-
tion methods for a semiparametric binary response model. (See
Blundell and Powell (2003) for a survey of these and othermethods
used in nonparametric and semiparametric regressionmodels. See
also Rothe (2009) for a more recent method for estimating semi-
parametric binary response models using control functions.) Al-
though very useful for triangular models when an instrument is
observed, the control function approach can be employed for iden-
tification of models with simultaneity only in very specific cases.
(See Blundell andMatzkin (2014).) More recent work on triangular
models with observable instruments include Torgovitsky (2015)
and D’Haultfoeuille and Fevrier (2015), who allow the observable
instrument to be discrete. Also for triangular models, Altonji and
Matzkin (2005) provide estimators for the structural function and
distribution, and for average derivatives, when the conditioning
variable is endogenous, either continuously distributed or discrete.

The structure of the paper is as follows. In the next section
we discuss triangular models, constructions of first-stage reduced
form functions, and trade-offs between observable and unobserv-
able instruments. In Sections 3 and 4 we present the results for
models with simultaneity. In Section 5 we provide equivalence re-
sults for identification in triangular models, and discuss applica-
tions to binary response models. Section 6 concludes.

2. Identification using first-stage reduced form functions

The objective of this section is to discuss previous results on
estimation of nonparametric nonseparable models, to show how
they can be used to construct first-stage reduced form functions,
and to demonstrate in a triangular model how these can be used to
identify the derivatives of a function of interest.

Consider first a model where

Y1 = m (X, ε1) (2.1)

and where the unknown function m is strictly increasing in ε1.
If X and ε1 are distributed independently and if the unknown
distribution Fε1 of ε1 is strictly increasing, then by Matzkin (2003)
it follows that for all x, ε1 at which the conditional distribution of
Y1 given X = x is defined,

m (x, ε1) = F−1
Y1|X=x


Fε1 (ε1)


. (2.2)

In other words, the function m is identified, up to a monotone
transformation of ε1, from the distribution of (Y1, X). The
invertibility of m in ε1 implies that given (y1, x) there exists a
unique value of ε1 satisfying (2.1). Assuming differentiability, the
partial derivative, ∂m (x, ε1) /∂x, of m with respect to x, when the
value of ε1 remains fixed at such value, is given by

∂m (x, ε1)
∂x

=
−

∂FY1 |X=x(y1)
∂x

∂FY1 |X=x(y1)
∂y1

=
−

∂FY1 |X=x(y1)
∂x

fY1|X=x (y1)
.
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