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a b s t r a c t

We show identification of the Average Treatment Effect (ATE) when treatment is specified by ordered
choice in cross section or panel models. Treatment is determined by location of a latent variable
(containing a continuous instrument) relative to two or more thresholds. We place no functional form
restrictions on latent errors and potential outcomes. Unconfoundedness of treatment does not hold
and identification at infinity for the treated is not possible. Yet we still show nonparametric point
identification and estimation of the ATE.We apply our model to reinvestigate the inverted-U relationship
between competition and innovation, and find no inverted-U in US data.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We consider a model where possible treatments are specified
by an ordered choice model. For example, treatment could be
determined by an ordered probit. However, unlike probit, we will
not specify the distribution of the latent error term.We also do not
specify how outcomes are determined as functions of treatment.
We place no functional form restrictions on the joint distribution
of latent errors and potential outcomes. Unconfoundedness of
treatment (either unconditional or conditional on covariates) does
not hold, and identification at infinity for the treated is not possible.
Yetwe still shownonparametric point identification of the Average
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Treatment Effect (ATE), and we provide an associated estimator,
which converges at parametric rates. We describe application of
the estimator to both cross section and panel data, though we
focus on panel data. The panel model allows for fixed effects in
both the treatment and outcome equations. In general, ordered
choice panel models with fixed effects suffer from the incidental
parameters problem, leading to slow rates of convergence, but we
provide conditions underwhich our estimator does not suffer from
the incidental parameters problem.

Suppose an outcome Y is given by

Y = Y0 + (Y1 − Y0)D (1.1)

where Y0 and Y1 are potential outcomes as in Rubin (1974), and
D is a binary treatment indicator. Generally, point identification of
the average treatment effect (ATE) E (Y1 − Y0) requires either (i)
conditional or unconditional unconfoundedness of treatment, or
(ii) an instrument for D that can drive D to zero and to one with
probability one (i.e., identification at infinity), or (iii) functional
restrictions on the joint distribution of Y0, Y1 and D. In contrast,
we provide a novel point identification result, and an associated
estimator, for the ATE in a model where none of these conditions
hold.
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Let V be a continuous instrument that affects the probability of
treatment but not the outcome, and let X denote a vector of other
covariates. Let D be given by a structure that is identical to one of
the choices in an ordered choice model, that is,

D = I [α0 (X) ≤ V + U ≤ α1 (X)] (1.2)

where I (·) is the indicator function that equals one if · is true
and zero otherwise, U is a latent error term, α0 (X) and α1 (X)
are unknown functions, and the coefficient of V is normalized to
equal one. The joint distribution of (U, Y0, Y1 | X) is assumed to be
unknown. Later we provide an extension to a model where V in
the treatment Eq. (1.2) is replaced with ς (V ) for some unknown
function ς .

In the special case of Eq. (1.2) whereα0 (X) andα1 (X) are linear
with the same slope, this is equivalent to treatment being given by
the more standard looking ordered choice specification

D = I

δ0 ≤ X ′β1 + V + U ≤ δ1


for constants δ0, δ1, and β1. However, we do not impose
these linearity restrictions. In addition, unlike standard ordered
choice models, we allow the distribution of U to depend on
X in completely unknown ways. Equivalently, the covariates X
can all be endogenous regressors, with no available associated
instruments. The only covariate we require to be exogenous is V .

In the proposed model, treatment and outcomes are con-
founded (both conditionally and unconditionally), because the un-
observable U that affects D can be correlated with Y0 and Y1, with
orwithout conditioning on X . No parametric or semiparametric re-
strictions are placed on the distribution of (U, Y0, Y1 | X), so treat-
ment effects are not identified by functional form restrictions on
the distributions of unobservables. We assume V has large sup-
port, but the model is not identified at infinity. This is because
both very large and very small values of V drive the probability
of treatment close to zero, but no value of V (or of other covari-
ates) drives the probability of treatment close to one. So in this
framework none of the conditions that are known to permit point
identification of the ATE hold. Even a local ATE (LATE) is not iden-
tified in the usual way (e.g., Imbens and Angrist, 1994), because
monotonicity of treatment with respect to the instrument cannot
hold in the proposed model. Nevertheless, we show that the ATE
is identified in our model, using a special regressor argument as in
Lewbel (1998, 2000, 2007)). Our results include a test of the large
support assumption required for this identification. We construct
a very simple estimator of the ATE based on this identification.

To illustrate the model and foreshadow our later empirical
application, suppose the outcome Y is a measure of innovation in
an industry and D = 1 when a latent measure of competitiveness
in the industry lies between two estimated thresholds, otherwise
D = 0. According to the ‘‘Inverted-U’’ theory in Aghion et al.
(2005) (hereafter ABBGH), industries with intermediate levels
of competitiveness have more innovation than those with low
levels or high levels of competition. As in Revenga (1990, 1992),
Bertrand (2004), and Hashmi (2013), we use a source-weighted
average of industry exchange rates as an instrumental variable for
competition, which we take to be our special regressor V . This
instrument is computed from the weighted average of the US
dollar exchange rate with the currencies of its trading partners.
When V is low, products from the US become relatively cheaper,
thereby reducing competition by driving out competitors. The
treatment effect we estimate is therefore the gains in innovation
that result from facingmoderate (rather than low or high) levels of
competition.

With Eqs. (1.1) and (1.2), one has D = 0 if the latent variable
is either above the upper threshold or below the lower threshold.
In many applications wewould want to distinguish between those

two cases. We would then have a standard ordered choice model
for treatment, that is,

D0 = I [V + U < α0 (X)] ,
D1 = I [α0 (X) ≤ V + U < α1 (X)] ,
D2 = I [α1 (X) ≤ V + U] (1.3)

so an individual receives treatment j for j = 0, 1, 2 if Dj = 1.
Letting Wj denote the potential outcome of an individual who
receives treatment j, we would now have

Y = D0W0 + D1W1 + D2W2. (1.4)

In particular, W0 is the potential outcome when lying below the
lower threshold andW2 is the potential outcomewhen lying above
the upper threshold. The earliermodel of Eqs. (1.1) and (1.2) are the
special case of this model where D = D1, Y1 = W1, and

Y0 = D0W0 + D2W2.

In this standard ordered choice model for treatment, the goal
would be identification of the means of three potential outcomes,
E

Wj

for j = 0, 1, 2, corresponding to low, medium, and high

values of the unobserved latent variable that determines selection.
In an extension section, we show identification of this ordered

choice model, and identification of a more general model having
any number of choices J instead of just the above case of J = 3.
For J = 3, identification and estimation of E (W1) is identical to
identification and estimation of E (Y1). But, unlike identification of
E (Y0), identification of the separate extreme potential outcomes
E (W0) and E (W2) requires identification at infinity arguments as
in Heckman et al. (2006). This means that, unlike estimation of
our original treatment effect E (Y1 − Y0), estimation of treatment
effects like E (W1 − W0) or E (W1 − W2) will converge at slower
than parametric rates. In contrast, identification at infinity is not
needed for identification of E (Y0) and E (Y1), and indeed is not
even possible for identification of E (Y1).

With this extension, our method can be applied to most
situations where treatment is defined by ordered response. For
example, one might consider returns to education where the
three possible treatments correspond to dropping out of school
(the low group), completing high school (the middle group),
and completing college (the high group). In our later empirical
application, this extension will help us to distinguish between
competing alternatives to the inverted-U hypothesis.

Even without this extension, our estimator is potentially useful
in applicationswhere onewants to assess the impact of a treatment
defined as a moderate level of some activity, versus low or high
levels. Many such treatments exist. For example, one might want
to assess the effects of moderate levels of BMI or of alcohol
consumption on a variety of health outcomes (see, e.g., Cao et al.,
2014; Koppes et al., 2005; Solomon et al., 2000). Other examples
are the effect of moderate levels of financial development on the
growth rates of countries (see Cecchetti and Kharroubi, 2012) or
the effects of moderate levels of financial regulation on measures
of financial instability (see Huang, 2015).

Our empirical application uses panel data. We extend our
method to show identification of E


Yjit

, and hence of E


Y1it −Y0it


,

in the panel data model

Yit =ai +bt + (1 − Dit) Y0it + Y1itDit , (1.5)
Dit = I(α0(xit) ≤ ai + bt + Vit + Uit ≤ α1(xit)), (1.6)

where ai,ai, bt ,bt are individual and time dummies in the
selection and outcome equations. To interpret Eq. (1.5), define
Y ∗

it = Yit −ai−bt , so Y ∗

it is the outcome Yit after time and individual
specific fixed effects have been removed. Eq. (1.5) then becomes
Y ∗

it = (1 − Dit) Y0it + Y1itDit , so Y0it and Y1it are the potential
outcomes, not of Yit , but of Y ∗

it . With this construction, then the
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