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a b s t r a c t

We consider a setting wheremarket microstructure noise is a parametric function of trading information,
possibly with a remaining noise component. Assuming that the remaining noise is Op(1/

√
n), allowing

irregular times and jumps, we show thatwe can estimate the parameters at rate n, and propose a volatility
estimator which enjoys

√
n convergence rate. Simulation studies show that our method performs well

even with model misspecification and rounding. Empirical studies demonstrate the practical relevance
and advantages of our method. Furthermore, we find that a simple model can account for a high
percentage of the total variation in microstructure noise.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

High-frequency data has attracted tremendous attention in re-
cent years. In the vast literature of high frequency data studies, a
central focus is to estimate volatilities consistently and efficiently.
A major challenge arises from the presence of market microstruc-
ture noise, which is an integral part of the financial market.

A widely used assumption about market microstructure noise
in the volatility estimation literature is that they are independent
and identically distributed (i.i.d.) and additive to the log-price
process. More specifically, over a time interval of interest [0, T ],
one observes at times 0 = t0 < t1 < · · · < tn = T ,

Ytk = Xtk + εtk , k = 0, 1, . . . , n, (1)

where Xtk and εtk denote the latent log-price and market
microstructure noise at the observation time tk respectively, and
εtk ’s are i.i.d. and independent of X . Consistent estimators of
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the integrated volatility under this setting include the two-scales
realized volatility (TSRV, Zhang et al. (2005)), multi-scale realized
volatility (MSRV, Zhang (2006)), realized kernels (RK, Barndorff-
Nielsen et al. (2008)), pre-averaging estimator (PAV, Jacod et al.
(2009) and Podolskij and Vetter (2009)), and quasi-maximum
likelihood estimator (QMLE, Xiu (2010)). The optimal rate of
convergence is n1/4 (Gloter and Jacod, 2001). MSRV, RK, PAV and
QMLE are all rate-optimal.

On the other hand, studies on market microstructure noise can
be traced back to the 1980s; see, Black (1986), Madhavan (2000),
O’Hara (1995), Stoll (2003), and Hasbrouck (2007), among many
others. An example of a simple model for microstructure noise is
the ‘‘implicit measure of the effective bid–ask spread’’ as in Roll
(1984):

εtk = αIb/s(tk), (2)

where Ib/s(tk) denotes the trade type, indicating if the trade is
buyer-initiated (+1) or seller-initiated (−1); and the coefficient α
can be interpreted as one-half of the effective bid–ask spread. Roll’s
model was extended in Glosten and Harris (1988) by incorporating
the trading volume:

εtk = Ib/s(tk)

α + βVtk


, (3)
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where Vtk denotes the trading volume at time tk. Almgren and
Chriss (2000) consider an optimal execution problem and they
model the market impact as a function of trade type and trading
rate. A variant in the spirit of (3) is then the following

εtk = Ib/s(tk)

α + βVtk/∆tk


, (4)

where∆tk := tk − tk−1 denotes the duration between two consec-
utive transactions. A pioneer paper in high-frequency volatility es-
timation literature Aït-Sahalia et al. (2005) also models the market
microstructure noise in a parametric way (but without covariates),
and shows that evenwithmodelmisspecification, such parametric
modeling enables one to estimate the volatility at the optimal rate
n1/4 under Model (1).

Rich information is available in high-frequency data. For ex-
ample, in trade data, in addition to transaction prices, trading
volumes are also reported. Furthermore, quotes data are also pub-
licly available, which contain even richer information. Individuals
or institutions can also have additional trading information. This
motivates us to consider taking advantage of the rich informa-
tion available in the market and study the setting where the noise
term in (1) can be further modeled using available trading infor-
mation through a parametric function such as (2)–(4). The func-
tion can be either linear or nonlinear. We show that in this case,
even with irregular observation times and jumps, the parameters
in the noisemodel can be estimatedwith high precision (with con-
vergence rate n instead of

√
n as in usual parametric estimations),

and consequently the latent log-prices can be estimated highly
accurately. This allows us to further obtain an efficient volatility
estimator, based on the estimated log-prices. We call this estima-
tor ‘‘estimated-price realized volatility’’ (ERV). We show that the
proposed ERV, which is based on noisy observations, provides

√
n

rate of convergence and the same asymptotic properties as realized
volatility (RV) based on latent log-prices.

Given the complexity of market microstructure noise, we
further consider the setting where market microstructure noise
admits an extra noise component. Under the assumption that the
extra noise component is Op(1/

√
n), we propose another volatility

estimator ERVext which still enjoys
√
n rate of convergence.

Numerically, we demonstrate that ERVext (and E-QMLE, another
estimator that we propose without establishing its asymptotic
properties) performs well even in the situations where there are
rounding errors and model misspecification on the parametric
model.More importantly, extensive empirical studies demonstrate
the relevance of our method and the advantages of our estimator.
An interesting additional empirical finding is that, for various
stocks examined, a simple model for market microstructure
noise, which incorporates only trade type and trading rate, can
account for around 70%–80% of the total variation in noise. Our
analysis also provides a useful framework for studying the market
microstructure.

An independent and concurrent research, Chaker (2013), shares
the same spirit as this paper. There are however quite a few major
differences. In our paper, the models for market microstructure
noise are allowed to be nonlinear1; the observation times are
allowed to be irregularly spaced, in fact the observation times can
even be endogenous as what is considered in Li et al. (2014, 2013);
and jumps are allowed in the latent price process. Furthermore,
our small additional noise assumption leads to rather different
estimators and asymptotic properties. Some earlier works along
this line include Hansen and Lunde (2006) and Engle and Sun

1 Nonlinear models are relevant in practice. For example, Keim and Madhavan
(1996) show that the price impact of block trades is a concave function of order
size.

(2007). Hansen and Lunde (2006) consider in the Section 6 of
their paper how to estimate the efficient prices from bid and ask
quotes and transaction prices, based on a vector autoregressive
model. Engle and Sun (2007) use GARCH model for the efficient
price process and a two-component ARMA model for the noise.

The rest of this paper is organized as follows. Section 2 presents
our proposed ERV estimator and its extensions, together with their
asymptotic properties. Sections 3 and 4 are devoted to simulation
studies and empirical studies, respectively. Section 5 concludes
and discusses related issues. Proofs are given in the Appendix.

2. Estimated-price realized volatility

2.1. When noise can be completely modeled

We assume that the latent log-price process has the following
representation:

dXt = µt dt + σt dWt + dJt , t ∈ [0, T ], (5)

where Wt is a Brownian motion, µt and σt are adapted locally
bounded random processes, and Jt is a pure jump process, all
defined on a common filtered probability space (Ω,F , (Ft)t≥0, P).
The quantity of interest is the quadratic variation (QV)

 T
0 σ

2
t dt +

t≤T (∆Jt)2 with ∆Jt := Jt − Jt−, or more often, the continuous
part of QV, commonly referred to as the integrated volatility IV := T
0 σ

2
t dt . Without loss of generality, we set T = 1.

Following Li et al. (2014) we shall allow the observation times
to be endogenous and adopt some of the notation therein. Denote
the observation times at stage n by

0 = tn,0 < tn,1 < · · · < tn,N ≤ 1. (6)

Here n is a latent number that characterizes the observation
frequency, and N = N(n), which may be random, stands for the
actual number of observations before time 1. See Section 3 of Li
et al. (2014) for various examples in this regard. In the exogenous
case when observation times are either deterministic or random
but independent of the price process, without loss of generality, we
can andwill taken = N .More generally,wewill establish a feasible
asymptotic theory in terms of N under the assumption that N/n
has a (possibly random) probability limit F . Let us mention that in
the endogenous setting, while in general n may not be uniquely
defined2, the feasible asymptotic theory will be independent of n
(see also Remark 1 in Li et al. (2014) or the discussion following
Assumption (O) in Jacod et al. (2014)). For notational ease, when
there is no confusion we shall write tn,1, tn,k as t1, tk etc.

In this subsection we consider the setting where the market
microstructure noise can be completely modeled by trading
information, through a parametric function g:

Ytk = Xtk + g(Ztk; θ0), (7)

whereYtk is the observed log-prices at time tk,Ztk is the information
set which can include, but not limited to, trade type, trading
volume and bid–ask bounds; and θ0 is a (finite-dimensional)
parameter. The aforementionedModels (2)–(4) are all examples of
g . We shall also consider some other forms of g in the numerical
studies in Section 3. In our theoretical analysis, we allow the

2 To see this, similar to Examples 4–6 in Li et al. (2014), define the observation
times tn,i to be successive hitting times: tn,i+1 := inf{t > tn,i : |Xt − Xtn,i | ≥

Zi+1/
√
n}, where Zi ’s are random variables which may or may not be i.i.d. Such a

definition suggests that n is a natural characterization of the observation frequency.
However, if another person takesZi+1 =

√
2Zi+1 , then tn,i+1 can be equivalently

defined ast2n,i+1 := inf{t >t2n,i : |Xt − Xt2n,i | ≥ Zi+1/
√
2n}. The latter definition

suggests 2n as another characterization of the observation frequency.
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