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a b s t r a c t

The indispensable role of likelihood expansions in financial econometrics for continuous-timemodels has
been established since the ground-breaking work of Aït-Sahalia (1999, 2002a, 2008). Jump–diffusions
play an important role in modeling a variety of economic and financial variables. As a significant
generalization of Li (2013), we propose a new closed-form expansion for transition density of Poisson-
driven jump–diffusion models and its application in maximum-likelihood estimation based on discretely
sampled data. Technically speaking, our expansion is obtained by perturbing paths of the underlying
model; correction terms can be calculated explicitly using any symbolic software. Numerical examples
and Monte Carlo evidence for illustrating the performance of density expansion and the resulting
approximateMLE are provided in order to demonstrate the practical applicability of themethod. Using the
theoretical results in Hayashi and Ishikawa (2012), some convergence properties related to the density
expansion and the approximate MLE method can be justified under some standard sufficient (but not
necessary) conditions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Continuous-time jump–diffusion processes have been widely
used in various fields of science and technology for providing
approximations to real-world dynamics of random fluctuations in-
volving both relatively mild diffusive evolutions and sudden dis-
continuities caused by significant shocks. In financial economics,
jump–diffusion models were introduced in the seminal work
ofMerton (1976), inwhich asset price ismodeled by a combination
of the celebrated Black–Scholes–Merton model (see Black and Sc-
holes (1973) andMerton (1973)) and a compound Poisson process.
During the past few decades, they have become a natural choice for
modeling financial variables.

The literature has witnessed an explosion of developments
and applications of jump–diffusion models in asset pricing, risk
management and portfolio consumption optimization. Various
stochastic volatility models with jump were proposed and inves-
tigated in, e.g., Bates (1996), Bates (2000), Duffie et al. (2000), Pan
(2002), Johannes et al. (2003), and Broadie et al. (2007). By enrich-
ing both diffusive and jump components as well as their interac-
tions, the affine jump–diffusion models were formally proposed

∗ Corresponding author.
E-mail addresses: cxli@gsm.pku.edu.cn (C. Li), dchen57@uic.edu (D. Chen).

in Duffie et al. (2000), which facilitate asset pricing and econo-
metric analysis owing to their analytical tractability. For pricing
various exotic options in using analytical methods, the double ex-
ponential jump–diffusion model was proposed by Kou (2002). By
employing the backward induction principle based on the Hamil-
ton–Jacobi–Bellman equations, portfolio planning problems in-
volving jump riskwere considered in, e.g., Liu et al. (2003), Pan and
Liu (2003), Aït-Sahalia et al. (2009), Aït-Sahalia and Hurd (2015),
and Jin and Zhang (2012). By enriching specifications of jump in-
tensity according to the idea ofHawkes processes (see, e.g., Hawkes
(1971)), self-exciting andmutual-exciting jumps are considered in,
e.g., Aït-Sahalia et al. (2015), Aït-Sahalia and Hurd (2015), Errais
et al. (2010), and Giesecke et al. (2011).

Econometric analysis of jump–diffusion models leads to is-
sues that are significantly different from those typically en-
countered in discrete-time series analysis, e.g., the estimation
of models formulated in continuous-time using data sampled
at discrete-time intervals. To conduct likelihood-based infer-
ences in this practical setting, transition densities play an im-
portant role; see, e.g., related discussions in Aït-Sahalia (2002b,
2004) and the references therein. Maximum-likelihood estima-
tion (MLE hereafter) for jump–diffusions usually encounters chal-
lenges arising from time-consuming computation of transition
densities. Closed-form expressions for transition densities can-
not be obtained even for some simple jump–diffusion models,
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e.g., a jump–diffusionmean-reverting Ornstein–Uhlenbeckmodel.
To conduct MLE, one usually needs computationally intensive nu-
merical methods, e.g., Monte Carlo simulation and characteristic-
function-based inversion method. Even if characteristic functions
of the transition distribution exist in closed-form (e.g., for the
affine jump–diffusion models proposed by Duffie et al. (2000)),
the Fourier inversion based density evaluation suffers from a large
computational load for each parameter set searched in the numer-
ical procedure of optimization. Given a typically large number of
possible candidate parameter sets and a large number of obser-
vations in high-frequency financial datasets (see, e.g., the survey
in Mykland and Zhang (2010)), this is computationally expensive
(if not impractical) because of the repeated valuation of numerical
Fourier inversions in the whole procedure for MLE.

Among variousmethods for approximating transition densities,
closed-form expansions have become popular because of their
fast computing time and numerical accuracy. In particular, as a
result of the progressive development of modern computation
technology, calculation of high-order expansions will become
increasingly feasible, and thus renders arbitrary accuracy at least in
principle. For diffusionmodels, a milestone is the ground-breaking
invention of Hermite-polynomial-based density expansion and
its application in MLE proposed in Aït-Sahalia (1999, 2002a,
2008), which motivated various substantial refinements and
applications, see, e.g., Bakshi et al. (2006), Aït-Sahalia andMykland
(2004, 2003), Aït-Sahalia and Kimmel (2007, 2010), Egorov et al.
(2003), Xiu (2014), Chang and Chen (2011), Dipietro (2001),
Stramer et al. (2010), and Choi (2013, 2015a,b). Enlightened
by this stream of literature, various density expansions for
jump–diffusion models were proposed, see, e.g., Aït-Sahalia and
Yu (2006) for the application of saddle point approximation, Yu
(2007) obtained from solving for correction terms of an expansion
from Kolmogorov’s forward and backward equations, Schaumburg
(2001) for expanding transition density of a Levy-driven model
on a related functional space, Filipović et al. (2013) for a general
approximation theory in weighted Hilbert spaces for random
variables, Giesecke and Schwenkler (2011) for approximating
point process filters, as well as Choi (2015a) for approximating
transition density function of a multivariate time-inhomogeneous
jump–diffusion process in a closed-form expression.

Complementing to the existing methods, we will propose a
new closed-form expansion for transition density and apply it in
approximate MLE for multivariate Poisson-driven jump–diffusion
models. Ourmethod can be viewed as a significant extension of the
method for diffusion models proposed in Li (2013). Because of the
fundamental challenge led by adding jumps, our expansion starts
from a new method of parametrization, which can be regarded as
a path perturbation and is different from the small-time setting
employed in Li (2013) for diffusion models. With presence of
jumps, the calculation of correction terms involves various explicit
computations related to both the diffusive and jump components.
Following similar discussions in Li (2013) (see pp. 1351–1352),
our expansion can be regarded as a jump–diffusion analogy of the
celebrated Edgeworth-type expansions; see, e.g., Chapter 2 in Hall
(1995) and applications to martingales in Mykland (1992, 1993).
However, in contrast to the traditional Edgeworth expansions, our
expansion does not require the knowledge of generally implicit
moments, cumulants or characteristic function of the underlying
variable, and thus it is applicable to awide range of jump–diffusion
processes.

The theoretical foundation for validity of our expansion orig-
inates in the theory of Watanabe (1987) and Yoshida (1992) for
analyzing generalizedWiener functionals, as well as its theoretical
generalization inHayashi and Ishikawa (2012) for analyzing gener-
alized Wiener–Poisson functionals, which focus on an alternative
class of expansions relying on the theory of large-deviations. The

uniform convergence rate (with respect to various parameters) of
our density expansion for a parameterized jump–diffusion model
can be proved under some standard sufficient conditions on the
drift and diffusion coefficients. This leads to convergence of the re-
sulting approximate MLE to the true MLE; and thus, the approxi-
mate MLE inherits the asymptotic properties of the true MLE. Such
theoretical results will be supported by numerical tests andMonte
Carlo simulations for some representative examples.

The rest of this paper is organized as follows. In Section 2,we in-
troduce the model with some technical assumptions. In Section 3,
we propose the transition density expansionwith closed-form cor-
rection terms of any arbitrary order. In Section 4, numerical per-
formance of the density expansion and Monte Carlo evidence for
the resulting approximate MLE are demonstrated through exam-
ples. In Section 5, we conclude the paper and outline some oppor-
tunities for future research. Technical details on explicit calculation
of expansion terms are provided in Appendices A–D. In an online
supplementary material, Li and Chen (2016), we document some
examples of closed-form expansion formulas, proofs of the results
in the appendices, detailed calculation regarding some alternative
specifications of the jump-size distribution, some theoretical dis-
cussions on the validity of our density expansion and the resulting
approximate MLE.

2. The model and basic setup

We focus on a Poisson-driven jump–diffusion model governed
by the following stochastic differential equation (SDE hereafter):

dX(t) = µ(X(t); θ)dt + σ(X(t); θ)dW (t) + dJ(t; θ), X(0) = x0
(1)

where X(t) is a d-dimensional random vector; {W (t)} is a
d-dimensional standard Brownian motion; µ(x; θ) = (µ1(x; θ),
µ2(x; θ), . . . , µd(x; θ))⊤ is a d-dimensional vector-valued func-
tion and σ = (σij(x; θ))d×d is a d × d matrix-valued function with
an unknown parameter θ belonging to a multidimensional open
bounded set Θ . Here, J(t; θ) is a vector-valued jump process mod-
eled by a compound Poisson process which can be specified as

J(t; θ) ≡ (J1(t; θ), J2(t; θ), . . . , Jd(t; θ))⊤

:=

N(t)
n=1

Zn ≡

N(t)
n=1


Zn,1, Zn,2, . . . , Zn,d

⊤
,

where {N(t)} is a Poisson process with a constant intensity λ.
For different integers n, Zn = (Zn,1, Zn,2, . . . , Zn,d)⊤ are i.i.d.
multivariate random variables. Assuming τ1, τ2, . . ., are the jump
arrival times, the jumppath can be expressed as a step function, i.e.,

J(t; θ) =

∞
n=1


n

i=1


Zi,1, Zi,2, . . . , Zi,d

⊤ 1[τn,τn+1](t). (2)

Let E ⊂ Rd denote the state space of X .
We note that various popular jump–diffusion-based asset

pricing models (see, e.g., Merton (1976), Kou (2002), Bates (2000),
Duffie et al. (2000), and Broadie et al. (2007)) take or can be easily
transformed into the form of (1). This model relaxes the condition
on linear drift and diffusion of the affine jump–diffusion model
proposed in Duffie et al. (2000). By assuming the intensity of {N(t)}
to be a constant, the existence and uniqueness of the solution to
model (1) can be guaranteed under some technical conditions, see,
e.g., discussions in Yu (2007). Besides, this assumption is supported
by various empirical evidences, see, e.g., Bates (2000), Andersen
et al. (2002), andChernov et al. (2003). Inmodeling typical financial
variables using a multidimensional jump–diffusion model, the
small sample problem is usually severe in the estimation of
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