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a b s t r a c t

We consider a nonlinear structural model in which the number of moments is not limited by the
sample size. The econometric problem here is to estimate and perform inference on a finite-dimensional
parameter. To handle the high dimensionality, we must systematically choose a set of informative
moments; in other words, delete the uninformative ones. In nonlinear models, a consistent estimator is
a prerequisite for moment selection. We develop in this paper a novel two-step procedure. The first step
achieves consistency in high-dimensional asymptotics by relaxing the moment constraints of empirical
likelihood. Given the consistent estimator, in the second step we propose a computationally efficient
algorithm to select the informative moments from a vast number of candidate combinations, and then
use these moments to correct the bias of the first-step estimator. We show that the resulting second-
step estimator is

√
n-asymptotic normal, and achieves the lowest variance under a sparsity condition. To

the best of our knowledge, we provide the first asymptotically normally distributed estimator in such an
environment. The new estimator is shown to have favorable finite sample properties in simulations, and
it is applied to estimate an international trade model with massive Chinese datasets.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The unprecedented accessibility of large micro-datasets at the
individual agent-level opens up opportunities to investigate amul-
titude of neweconomic problems aswell as old problems fromnew
perspectives. Respecting a long tradition of building parsimonious,
often nonlinear, structural models to characterize complex eco-
nomic phenomena, empirical econometric analysis typically con-
centrates on a few key parameters that bear economic meaning.
Structural models involving moment conditions are widely used
in many areas of econometrics. While moment restrictions arise
naturally from the economic context, theory usually gives little
guidance about the choice of the moment restrictions. In modern
empirical work it is nothing extraordinary to estimate with hun-
dreds or even thousands of moments. The fundamental challenge
in such empirical work is to develop a theory of estimation and
inference that allows for high-dimensionality in the moment con-
ditions relative to the sample size.

Several latest empirical applications take advantage of large
datasets and large models. For instance, Altonji et al. (2013) ex-
amine a joint model of earnings, employment, job changes, wage
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rates, andwork hours over a career with a full specification of 2429
moments. Eaton et al. (2011) explore the sales of French manufac-
turing firms in 113 destination countries with 1360moments. Han
et al. (2005) investigate the cost efficiency of the Spanish saving
banks in a time-varying coefficient model with 872 moments. All
these empirical examples estimate a finite-dimensional parameter
of interest in structuralmodelswithmanynonlinearmoments. The
underlying models take the following form. A ‘‘true’’ parameter β0
satisfies the unconditional moment restriction

E [g (Zi, β)] = 0m, for i = 1, . . . , n,

where {Zi}ni=1 is the observed data, β0 ∈ B ⊂ RD is finite-
dimensional, g is an Rm-valued moment function, and 0m is an
m× 1 vector of zeros.

It is known from the literature that the relative magnitude of
m and n shapes the asymptotic properties of generalized method
of moments (GMM) and empirical likelihood (EL). Under the usual
assumptions, consistency demands m = o (n) and

√
n-asymptotic

normality demands m3
= o (n) (Koenker and Machado, 1999;

Donald et al., 2003). Though the sample sizes in these cited empir-
ical examples can run to thousands or even millions, valid asymp-
totic statistical inference may require many more observations
still.

In this paper, we consider a nonlinear structural model in
whichm can be much larger than n, and the econometric problem
is to estimate and perform inference on a finite-dimensional
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parameter of interest. The phrase high-dimensional in the title
refers specifically to them > n case.

Han and Phillips (2006) explain the challenge when m is large
in the simple equally-weighted GMM (EW-GMM). They find that
the consistency of EW-GMM depends on the relative strength
of main signal against signal variability. The former contains
information about the true parameter in population, while the
latter arises from the sampling error of moment functions. Despite
a small contribution from each moment component, the signal
variability induced by a large number of moments accumulates in
the quadratic-form of the GMM criterion and can overwhelm the
main signal. Their work was followed by Newey and Windmeijer
(2009), who provide a new variance estimator of the generalized
empirical likelihood (GEL), which is consistent under many weak
moments. These two papers do not consider the estimation with
high-dimensional moments.

Bai and Ng (2009, 2010) and Belloni et al. (2012) investigate the
estimation of the high-dimensional linear instrumental variable
(IV) model. In their setting, a large number of IVs all meet
the orthogonality condition (zero correlation with the structural
error), while only a small handful of the IVs satisfy the relevance
condition (non-zero correlation with the endogenous regressors),
but the identities of the relevant IVs are unknown. Belloni et al.
(2012) use Lasso as an IV selector, and then plug in the predicted
endogenous regressors or the post-Lasso two-stage least squares
(2SLS) to efficiently estimate the structural parameter. Bai and Ng
(2009) utilize boosting to select IVs in the first stage reduced-
forms, and Bai and Ng (2010) develop a factor IV estimator to
achieve optimality.

The relevant moments for β is characterized by E


∂
∂β

gj (Zi,

β0)

,1 the derivative of the moment function at β0. The derivative,

as a local property, explicitly depends on β0 in nonlinear models,
but is independent of β in the linear IV model. Therefore, in
nonlinear models we cannot apply these methods that select
relevant IVs in the first stage of 2SLS. In the meantime, we also
assume that the identities of the relevant, or informative,moments
are unknown. As a result, we cannot randomly pick a small subset
of moments, as those moments may weakly or completely fail
to identify the parameter. We must choose a set of informative
moments in a systematic manner.

We address the estimation problem via a novel two-step
procedure adapted to nonlinear models. As we have explained,
it is necessary to locate the true β0 before evaluating which
moment is informative. We propose an estimator called relaxed
empirical likelihood (REL), which is consistent in high-dimensional
asymptotics. Consistency, as a global property, demands the
involvement of all moments. REL is constructed to tolerate a
slight violation of the equality constraints in the standard EL.
The magnitude of tolerance is specified by the user as a tuning
parameter, which controls the maximal sampling error of the
moments. Under regularity conditions, we show that REL achieves
nearly-optimal rate of convergence to the true parameter.

Given REL’s consistency, we can then proceed to the second
step to select informative moments. With too many possible
combinations, the effectiveness of moment selection hinges on
computational feasibility. We propose a boosting-type greedy
algorithm that forms an increasing sequence of selected moments.
In each iteration, the algorithm adds only onemoment, namely the
one that maximizes an information criterion given the moments

1 Indeed the criterion function for a combination of moments is the Fisher
information that we will introduce in Section 3. Here we temporarily use
E


∂
∂β

gj (Zi, β0)

to keep the discussion non-technical.

selected in the preceding iterations. With the selected moments,
we can further correct REL’s bias incurred in the relaxation.We call
the second-step estimator the bias-corrected REL (BC-REL).

In high-dimensional statistics, sparsity is often critical for
theoretical development. In our context, sparsity means that
the number of informative moments is much smaller than the
sample size. Without sparsity, BC-REL is

√
n-asymptotic normal

after variance standardization; with sparsity, BC-REL obtains the
smallest asymptotic variance. To the best of our knowledge, this
paper is the first to establish asymptotic normality in high-
dimensional nonlinear models.

Our methodology follows a vast literature. The use of many
linear IVs originated in Angrist (1990). It motivated intensive
econometric research, for example Hahn (2002), Chao and
Swanson (2005) and Chao et al. (2011), to name a few. Bai and
Ng (2010) and Belloni et al. (2012) resolve the problem of m > n
in the linear IV setting. Gautier and Tsybakov (2013) propose a
new IV estimator based on the Dantzig selector (Candes and Tao,
2007) in a more general setting that allows for a high-dimensional
parameter in the linear structural equation; their focus is different
from the other two papers. In another line of research, Carrasco
and Florens (2000, 2014) develop GMM theory for many moments
or a continuum of moments with g in a Hilbert space. The Hilbert
space setting can be restrictive when the moments are generated
from detailed observations in large datasets, for example a large
number of mutually orthogonal non-degenerate IVs.

Our first step estimation REL is built on EL (Owen, 1988; Qin
and Lawless, 1994; Kitamura, 1997). As an information-theoretic
alternative to GMM, Kitamura (2001), Kitamura and Stutzer
(1997), Newey and Smith (2003) and Otsu (2010) find theoretical
advantages of EL. Latest developments of EL to cope with an
infinite-dimensional parameter include Otsu (2007) and Lahiri and
Mukhopadhyay (2012).

In terms of estimation in high-dimensional models, Caner
(2009) and Caner and Zhang (2014) introduce a Lasso-type penalty
to GMM for variable selection. Belloni et al. (2010, 2011), Belloni
and Chernozhukov (2011), and Belloni et al. (2011) contribute to
various aspects of estimation and inference in high-dimensional
econometric and statistical models. Fan and Liao (2014) propose
the penalized focused generalized method of moments in which the
sparsity of the high-dimensional parameter is directly associated
with the moments.

Regarding the selection step, Andrews and Lu (2001) propose
several information criteria in GMM, and Hong et al. (2003) give
the EL counterpart. Breusch et al. (1999) discuss the problem of
redundant moments, and Hall and Peixe (2003) and Hall et al.
(2007) develop a selection criterion. Liao (2013) and Cheng and
Liao (2015) use a Lasso-type penalty to remove, in one step,
possibly misspecified as well as redundant moments. During the
revision of this manuscript, Luo (2014) proposes an alternative
selection method via Lasso, which obtains the same asymptotic
normality under similar assumptions.

Through this paper, we adopt the following notations. ∥·∥∞ is
the sup-norm – the largest element in absolute value – of a matrix.
∥·∥2 and ∥·∥1 are the vector l2-norm and l1-norm, respectively.
∥·∥0 is the cardinality of a set. C ∈ (1,∞) represents a fixed
finite constant independent of the sample size.φmin (·) andφmax (·)
are the minimal and maximal eigenvalues, respectively. M :=

{1, . . . ,m} is the index set of all moments, and D := {1, . . . ,D}
is the index set of all components of the parameter β . In is an n× n
identity matrix. (·)− is the Moore–Penrose pseudo-inverse.

The rest of the paper is organized as follows. Section 2
introduces the idea of REL, derives its consistency and rate
of convergence. Section 3 constructs BC-REL and establishes
its asymptotic normality based on the boosting-type greedy
algorithm. Section 4 provides a simulation example, and Section 5
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