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a b s t r a c t

In linear regression models with high dimensional data, the classical z-test (or t-test) for testing the
significance of each single regression coefficient is no longer applicable. This is mainly because the
number of covariates exceeds the sample size. In this paper, we propose a simple and novel alternative
by introducing the Correlated Predictors Screening (CPS) method to control for predictors that are highly
correlated with the target covariate. Accordingly, the classical ordinary least squares approach can be
employed to estimate the regression coefficient associated with the target covariate. In addition, we
demonstrate that the resulting estimator is consistent and asymptotically normal even if the random
errors are heteroscedastic. This enables us to apply the z-test to assess the significance of each covariate.
Based on the p-value obtained from testing the significance of each covariate, we further conductmultiple
hypothesis testing by controlling the false discovery rate at the nominal level. Then, we show that
the multiple hypothesis testing achieves consistent model selection. Simulation studies and empirical
examples are presented to illustrate the finite sample performance and the usefulness of the proposed
method, respectively.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In linear regression models, it is a common practice to employ
the z-test (or t-test) to assess whether an individual predictor
(or covariate) is significant when the number of covariates (p) is
smaller than the sample size (n). This test has been widely applied
across various fields (e.g., economics, finance and marketing)
and is available in most statistical software. One usually applies
the ordinary least squares (OLS) approach to estimate regression
coefficients and standard errors for constructing a z-test (or
t-test); see, for example, Draper and Smith (1998) andWooldridge
(2002). However, in a high dimensional linear model with p
exceeding n, the classical z-test (or t-test) is not applicable because
it is infeasible to compute the OLS estimators of p regression
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coefficients. This motivates us to modify the classical z-test (or
t-test) to accommodate high dimensional data.

In high dimensional regression analysis, hypothesis testing has
attracted considerable attention (Goeman et al., 2006, 2011; Zhong
and Chen, 2011). Since these papers mainly focus on testing a
large set of coefficients against a high dimensional alternative,
their approaches are not applicable for testing the significance of
a single coefficient. Hence, Bühlmann (2013) recently applied the
ridge estimation approach and obtained a test statistic to examine
the significance of an individual coefficient. His proposed test
involves a bias correction, which is different from the classical
z-test (or t-test) via the OLS approach. In themeantime, Zhang and
Zhang (2014) proposed a low dimensional projection procedure
to construct the confidence intervals for a linear combination
of a small subset of regression coefficients. The key assumption
behind their procedure is the existence of good initial estimators
for the unknown regression coefficients and theunknown standard
deviation of random errors. To this end, the penalty function with
a tuning parameter is required to implement Zhang and Zhang’s
(2014) procedure. Later, van de Geer et al. (2014) extended the
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results of Zhang and Zhang’s (2014) to broad models and general
loss functions.

Instead of the ridge estimation and low dimensional projec-
tion, Fan and Lv (2008) and Fan et al. (2011) used the corre-
lation approach to screen out those covariates that have weak
correlations with the response variable. As a result, the total num-
ber of predictors that are highly correlated with the response vari-
able is smaller than the sample size. However, Cho and Fryzlewicz
(2012) found out that such a screening process via the marginal
correlation procedure may not be reliable when the predictors are
highly correlated. To this end, they proposed a tilting correlation
screening (TCS) procedure to measure the contribution of the tar-
get variable to the response. Motivated by the TCS idea of Cho
and Fryzlewicz (2012), we develop a new testing procedure that
can lead to accurate inferences. Specifically, we adopt the TCS idea
and introduce the Correlated Predictors Screening (CPS) method
to control for predictors that are highly correlated with the target
covariate before a hypothesis test is conducted. It is worth noting
that Cho and Fryzlewicz (2012) mainly focus on variable selection,
while we aim at hypothesis testing.

If the total number of highly correlated predictors resulting
from the CPS procedure is smaller than the sample size, their
effects can be profiled out from both the response and the
target predictor via projections. Based on the profiled response
and the profiled predictor, we are able to employ a classical
simple regression model to obtain the OLS estimate of the target
regression coefficient. We then demonstrate that the resulting
estimator is

√
n-consistent and asymptotically normal, even if the

random errors are heteroskedastic as considered by Belloni et al.
(2012, 2014). Accordingly, a z-test statistic can be constructed
for testing the target coefficient. Under some mild conditions,
we show that the p-values obtained by the asymptotic normal
distribution satisfy the weak dependence assumption of Storey
et al. (2004). As a result, the multiple hypothesis testing procedure
of Storey et al. (2004) can be directly applied to control the false
discovery rate (FDR). Finally, we demonstrate that the proposed
multiple testing procedure achieves model selection consistency.

The rest of the article is organized as follows. Section 2
introduces model notation and proposes the CPS method. The
theoretical properties of hypothesis tests via the CPS as well as
the FDR procedures are obtained. Section 3 presents simulation
studies, while Section 4 provides real data analyses. Some
concluding remarks are given in Section 5. All technical details are
relegated to Appendix.

2. The methodology

2.1. The CPS method

Let (Yi, Xi) be a random vector collected from the ith subject
(1 ≤ i ≤ n), where Yi ∈ R1 is the response variable and Xi =

(Xi1, . . . , Xip)
⊤

∈ Rp is the associated p-dimensional predictor
vector with E(Xi) = 0 and cov(Xi) = Σ = (σj1j2) ∈ Rp×p.
In addition, the response variable has been centralized such that
E(Yi) = 0. Unless explicitly stated otherwise, we hereafter assume
that p ≫ n and n tends to infinity for asymptotic behavior. Then,
consider the linear regression model,

Yi = X⊤

i β + εi, (2.1)

where β = (β1, . . . , βp)
⊤

∈ Rp is an unknown regression co-
efficient vector. Motivated by Belloni et al. (2012, 2014), we as-
sume that the error terms εi are independently distributed with
E(εi|Xi) = 0 and finite variance var(εi) = σ 2

i for i = 1, . . . , n. In
addition, define the average of error variances as σ̄ 2

n = n−1
i σ

2
i ,

and assume that σ̄ 2
n → σ̄ 2 as n → ∞ for some finite positive con-

stant σ̄ 2. To assess the significance of a single coefficient, we test
the null hypothesisH0 : βj = 0 for any given j. Without loss of gen-
erality, we focus on testing the first regression coefficient. That is,

H0 : β1 = 0 vs. H1 : β1 ≠ 0, (2.2)

and the same testing procedure is applicable to the rest of the in-
dividual regression coefficients.

For the sake of convenience, let Y = (Y1, . . . , Yn)
⊤

∈ Rn be
the vector of responses, X = (X1, . . . , Xn)

⊤
∈ Rn×p be the design

matrix with the jth column Xj ∈ Rn, and E = (ε1, . . . , εn)
⊤

∈ Rn.
In addition, letI be an arbitrary index setwith cardinality |I|. Then,
define XiI = (Xij : j ∈ I)⊤ ∈ R|I|, XI = (X1I, . . . , XnI)

⊤
= (Xj :

j ∈ I) ∈ Rn×|I|, ΣI = (σj1j2 : j1 ∈ I, j2 ∈ I) ∈ R|I|×|I|, and
ΣIj = Σ⊤

jI = (σj1j2 : j1 ∈ I, j2 = j) ∈ R|I|. Moreover, define
ΣIaIb = (σj1j2 : j1 ∈ Ia, j2 ∈ Ib) ∈ R|Ia|×|Ib| for any two arbitrary
index sets Ia and Ib, which implies ΣII = ΣI.

Before constructing the test statistic, we first control those
predictors that are highly correlated with Xi1. Otherwise, they can
generate a confounding effect, due to multicollinearity and yield
an incorrect estimator of β1. Specifically, the marginal regression
coefficient (X⊤

1 X⊤

1 )−1X⊤

1 Y = β1 + (X⊤

1 X⊤

1 )−1X⊤

1 (Y − X1β1) is
not a consistent estimator of β1 when Y − X1β1 and X1 have
a strong linear relationship. To remove the confounding effect,
define ρ1j = corr(Xi1, Xij) as the correlation coefficient of Xi1 and
Xij for j = 2, . . . , p, and ρ∗

1 = (|ρ12|, . . . , |ρ1p|)
⊤

∈ Rp−1. We also
assume that |ρ1j| are distinct. Then, let Sk be the set of k indices
whose associated predictors have the largest absolute correlations
with Xi1:

Sk =

2 ≤ j ≤ p : |ρ1j| is among the first k largest

absolute correlations in ρ∗

1


. (2.3)

The choice of k (i.e., Sk) will be discussed in Remark 2.With a slight
abuse of notation, we sometimes denote Sk by S in the rest of
the paper for the sake of convenience. To remove the confounding
effect due to XiS , we construct the profiled response and predictor
as Y = QSY and X1 = QSX1, respectively, where QS = In −

XS(X⊤
S XS)

−1X⊤
S ∈ Rn×n and In ∈ Rn×n is the n× n identity matrix.

We next follow the OLS approach and obtain the estimate of the
target coefficient β1,

β̂1 = (X⊤

1
X1)

−1(X⊤

1
Y) = (X⊤

1 QSX1)
−1(X⊤

1 QSY).

We refer to the above procedure as the Correlated Predictors
Screening (CPS) method, β̂1 as the CPS estimator of β1, and S as
the CPS set of Xi1.

It is of interest to note that the proposed CPS estimator β̂1 is
closely related to the estimator obtained via the ‘‘added-variable
plot’’ approach (e.g., see Cook and Weisberg, 1998). To illustrate
their relationship, let X−1 be the collection of all covariates in X
except forX1. Then themethod of ‘‘added-variable plot’’ essentially
takes the residuals from regressing Y against X−1 as the response
and the residuals from regressing X1 against X−1 as covariates.
Although both approaches can be used to assess the effect of X−1
on the estimation of β1, they are different. Specifically, the ‘‘added-
variable plot’’ approach requires regressing X1 on all remaining
covariates,which is not computablewhen the dimension p is larger
thann. By contrast, CPS only considers those predictors inS that are
highly correlated with X1, which is applicable in high dimensional
settings.

Making inferences about β1 in high dimensional models is
challenging because these inferences can depend on the accuracy
of estimating the whole vector β; see Belloni et al. (2014), van
de Geer et al. (2014) and Zhang and Zhang (2014). The main
contribution of our proposed CPS method is employing a simple
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