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a b s t r a c t

Functional data analysis has became an increasingly popular class of problems in statistical research.
However, functional data observed over time with serial dependence remains a less studied area.
Motivated by Bosq (2000), who first introduced the functional autoregressive models, we propose a
convolutional functional autoregressive model, where the function at time t is a result of the sum of
convolutions of the past functions and a set of convolution functions, plus a noise process, mimicking
the vector autoregressive process. It provides an intuitive and direct interpretation of the dynamics of a
stochastic process. Instead of principal component analysis commonly used in functional data analysis,
we adopt a sieve estimation procedure based on B-spline approximation of the convolution functions.
We establish convergence rate of the proposed estimator, and investigate its theoretical properties. The
model building, model validation, and prediction procedures are also developed. Both simulated and real
data examples are presented.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Functional data analysis has received much attention over the
last few decades, and has been widely applied in many fields, in-
cludingmedical science (Houghton et al., 1980; Gasser et al., 1984;
Ratcliffe et al., 2002a,b), behavioral science (Keselman and Kesel-
man, 1993), and economics (Roberts, 1995; Diebold and Li, 2006).
Nonparametricmethods, such as splinemethods (Silverman, 1984;
Brumback and Rice, 1998; Zhou et al., 1998; Cai et al., 2000) and
kernel smoothing (Nadaraya, 1964;Watson, 1964; Fan and Gijbels,
1996), were often implemented to analyze functional data. Unsu-
pervised learning methods, such as principal component analy-
sis (James et al., 2000) and clustering analysis (James and Sugar,
2003) were extended for functional data as well. Books by Ramsay
and Silverman (2005), Ferraty and Vieu (2006), and Horváth and
Kokoszka (2012) provide comprehensive introductions on various
aspects of functional data analysis.

Often, a variety of functional data is observed over time and
has serial dependence. For example, in financial industry, the
implied volatility of an option as a function of moneyness changes
over time. In insurance industry, age-specific mortality rate as
a function of age changes over time. In banking industry, term
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structure of interest rates (yield as a function of time to maturity
of a bond) changes over time. In meteorology, daily records of
temperature, precipitation and cloud cover for a region, viewed as
three related functional surfaces, change over time.

Time series analysis, designed to explore the underlying
dynamics of data, is well studied and understood, with modern
development in nonlinear (Tong and Lim, 1980; Chan, 1993),
nonparametric (Chen and Tsay, 1993a,b; Härdle et al., 1997; Xia
and Li, 1999; Cai et al., 2000; Fan and Yao, 2003), multivariate (Tiao
and Tsay, 1983, 1989; Lüetkepohl, 2005) and spatial–temporal
modeling (Handcock and Wallis, 1994; Cressie and Huang, 1999;
Gneiting, 2002). Functional datawith serial dependence poses new
challenges, and requires new methodology in time series analysis.

Bosq (2000) first introduced functional autoregressive (FAR)
models of order p,

Xt = ∆1Xt−1 + · · · +∆pXt−p + εt ,

where X = (Xt , t ∈ Z) and ε = (εt , t ∈ Z) are a sequence
of random functions and a functional white noise process, re-
spectively, and ∆i, is a linear operator in Hilbert functional
space H. Only under some special cases, these linear operators
can be estimated by performing functional principal component
analysis on the sample autocovariance operators. The consis-
tency of such estimators has been proved (Bosq, 2000; Hörmann
et al., 2013). All the theoretical and empirical results in the lit-
erature were developed based on the models and methods in
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Bosq (2000), including Hörmann and Kokoszka (2010), Horváth
et al. (2010), Aue et al. (2012), Horváth and Kokoszka (2012),
Horváth et al. (2012), Berkes et al. (2013), and Hörmann et al.
(2013).

In this article, we develop a new class of functional time
series models called the convolutional functional autoregressive
(CFAR) models, along with its associated estimation procedure
using splines and sievemethods. As a special case of the FARmodel,
our model provides an intuitive and direct interpretation of the
dynamics of a stochastic process. It assumes that the function at
time t is a result of the sum of convolutions of the past functions
and convolution functions plus a noise process, mimicking the
autoregressive process commonly used in scalar time series. It is
also an extension of the vector autoregressive process. For the
FARmodel, Bosq (2000) proposed a Yule–Walker type estimator of
the autocorrelation operator, obtained using functional principal
component analysis. In contrast, our method fully exploits the
advantage of the convolution structure and the assumption that
the impact of the past on the present is smooth. Both simulated
and real examples show that the sieve estimator outperforms
in estimation and prediction. The paper makes contributions to
the literature in three aspects. First, we propose a new class of
functional time series model, and introduce the sieve estimation
of the autoregressive operators. Second, we establish the central
limit theorems and convergence rates for the convolution function
estimators. For the FAR model, Bosq (2000) only considered
consistency, and Mas (2002) obtained a partial result on the weak
convergence of the autoregressive operator. Third, we develop
model building and model validation procedures for CFAR models,
while the study of FAR models is less complete due to lack of
specific model assumptions.

The rest of the paper is organized as follows. In Sections 2 and 3,
the CFARmodel and the associated statistical inference procedures
are introduced. The asymptotic theories are developed in Section 4.
Simulation results are presented in Section 5 and a real example is
analyzed in Section 6. All proofs are collected in the Appendix.

We first introduce some notations. For a vector µ, (µ)i denotes
its ith entry. For a matrix A, (A)ij denotes its (i, j)th entry. Without
loss of generality, we only consider time series on the function
space L2([0, 1],B[0,1], λ), abbreviated as L2[0, 1], where B[0,1] is
the Borel σ -field, and λ is the Lebesguemeasure. For a function f ∈

L2[0, 1], ∥f ∥ := ∥f ∥2 denotes its L2 norm. If f is also continuous, we
use ∥f ∥∞ to denote its maximumnorm.We consider the following
classes of smooth functions:

Liph
[−1, 1] = {f ∈ [−1, 1] : |f (x + δ)− f (x)| 6 Mδh,

M < ∞, 0 < h 6 1},

Lipζ2[−1, 1] = {f ∈ C r
[−1, 1] : f (r) ∈ Liph

[−1, 1],
ζ > 1, r = ⌊ζ⌋, h = ζ − r},

If f ∈ Lipζ2[−1, 1], then ζ is called moduli of smoothness of f (·).

2. Convolutional functional autoregressive models

A sequence of random functions X = (Xt , t ∈ Z) in L2[0, 1] is
called a convolutional functional autoregressive model of order p,
denoted by CFAR(p), if

Xt(s) =

p
i=1

 1

0
φi(s − u)Xt−i(u) du + εt(s), s ∈ [0, 1], (1)

where φi ∈ L2[−1, 1] for i = 1, . . . , p, are called convolution
functions, and εt are i.i.d. Ornstein–Uhlenbeck (O–U) processes
defined on [0, 1], following the stochastic differential equation,
dεt(s) = −ρεt(s)ds+σdWs,ρ > 0, andWs being aWiener process.

Remark 1. Following Bosq (2000), a natural generalization of
vector autoregressive process of order p on the function space is

Xt(s) =

p
i=1

 1

0
φi(s, u)Xt−i(u) du + εt(s), s ∈ [0, 1].

From a pointwise view, the function at time t and point s is a
weighted sum of p past functions plus noise. Our CFAR(p) model
can be viewed as a special case when ψ(s, u) = φ(s − u), where
φ(·) is a smooth function. The autoregressive operator of ourmodel
thus has the Toeplitz structure. Under this model, the conditional
mean of Xt(s) is obtained as a kernel type average of Xt−1(·) around
the same argument s. In functional data analysis, it is often the case
that Xt(s) has a stronger relationshipwith Xt−1(u) for the u close to
s, than those u far away from s. Ourmodel is able to exploit this type
of dependence among the data. The real data example on volatility
smiles shows that ourmodel has better prediction performance, as
compared with the more general model.

Remark 2. For functional data, it is common to assume that it is
continuous for both practical and technical reasons; see Ramsay
and Silverman (2005). For this reason, we choose the noise process
with continuous sample paths. To reduce model complexity, we
also require spatial dependence to be stationary. Due to these
considerations, we assume that the error processes εt follow the
O–U process, which is Gaussian with the following covariance
structure:

εt(s1) ∼ N

0,
σ 2

2ρ


, Corr(εt(s1), εt(s2)) = e−ρ|s1−s2|,

∀s1, s2 ∈ [0, 1].

To account for spatial heteroscedasticity, we can include a variance
function of the noise process in the model.

Xt(s) =

p
i=1

 1

0
φi(s − u)Xt−i(u) du + w(s)εt(s), s ∈ [0, 1], (2)

where w(s) is a heteroscedasticity function for the noise process.
We note that O–U process is just one of the many possible choices
here. Other noise process, including various Gaussian processes,
can be used here, though we require a parametric family for our
estimation procedure. Our asymptotic results are derived under
O–U process but can be extended to other noise processes.

If all the convolution functions {φi(·), i = 1, . . . , p} are contin-
uous, Xt is also continuous, but not differentiable. The skeleton of
Xt(·), excluding the noise process, defined as

ft(s) =

p
i=1

 1

0
φi(s − u)Xt−i(u) du

is differentiable.
In model (1), convolution functions {φi(·), i = 1, . . . , p}

allow various sample paths of the Xt(·) process, Fig. 1 shows two
simulated examples. The top panel uses φ(s) = 1, s ∈ [−1, 1], and
X0(·) = 0 and the bottom one uses φ(s) = I(s > 0), s ∈ [−1, 1],
and X0(·) = 10. Both use ρ = 5, σ 2

= 10. The solid lines and
dashed lines are Xt(·) and ft(·), respectively, t = 1, 2, 3 and 100.
In the top panel, since φ(·) is a constant function, ft(·) is simply
the average of Xt(·) hence a constant function. In the bottom panel,
φ(·) is an indicator function on (0, 1], so the skeleton of ft(s)would
be a partial integration of Xt−1(·) on the left of s in [0, s]. At s = 0,
Xt(0) contains no information ofXt−1, but only noise; as s increases,
the weight φ(s − ·) increases and information carried by Xt(s) on
Xt−1(·) increases as well; at s = 1, Xt(1) is the integration of the
function Xt−1(·) in the entire range of [0, 1] plus noise. It is worth
noting that the process in the top panel is nonstationary. We start
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