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a b s t r a c t

The covariancematrices are essential quantities in econometric and statistical applications including port-
folio allocation, asset pricing and factor analysis. Testing the entire covariance under high dimensionality
endures large variability and causes a dilution of the signal-to-noise ratio and hence a reduction in the
power. We consider a more powerful test procedure that focuses on testing along the super-diagonals
of the high dimensional covariance matrix, which can infer more accurately on the structure of the co-
variance. We show that the test is powerful in detecting sparse signals and parametric structures in the
covariance. The properties of the test are demonstrated by theoretical analyses, simulation and empirical
studies.
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1. Introduction

The covariance matrix of a random vector or a multivariate
estimating function is a basic ingredient in multivariate analysis
and econometrics in gaining information on the dependence
between the components of the randomvectors and the estimating
functions. The celebrated Markowitz theory for optimal portfolio
selection (Markowitz, 1952) is based on consistent estimation of
the covariance matrix whose dimension is the number of assets
of the portfolio. The sample variance is actively employed in an
array of multivariate procedures such as the principal component
analysis (PCA), the discrimination analysis and the factor analysis.
In econometrics, the generalized method of moment (GMM)
requires inversion of the covariance matrix of the multivariate
moments as theweightingmatrix.When the dimension of the data
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vector or the moments is fixed, the sample/empirical covariance is
known to be consistent to the underlying covariance matrix.

Data with dimensions comparable to or larger than the sample
size are increasingly encountered in econometric and statistical
analyses. They include analyses of large panels of financial
portfolios, on-line prices of consumer goods,macro-economic data
that measure a large number of features of an economy; see Stock
and Watson (2005), Bai and Ng (2002), Lam et al. (2011), Bai
and Li (2012), Lam and Yao (2012) and Chang et al. (2015) for
over-views and specific results. Fan et al. (2008) considered a
covariance matrix estimator for a multi-factor model where the
number of factors is allowed to grow with dimension p when p
tends to infinity as the sample size n increases.

Extensive research in obtaining consistent estimators of high
dimensional covariance matrix has been made. Bickel and

Levina (2008a,b) proposed, respectively, the banding and the
thresholding estimator of the covariance matrix by either banding
or thresholding the sample covariancematrix.Wuand Pourahmadi
(2003) and Rothman et al. (2010) studied methods based on the
Cholesky decomposition. Cai et al. (2010) proposed a tapering
estimator. The banding and tapering estimators are operational
when the underlying covariance matrix Σ = (σi,j)p×p belongs to
the so-called bandable class, which prescribes that σi,j diminishes
to zero at certain rates as either j or i increases. There is a set of high
dimensionality tests on the covariance Σ . Testing for the identity
or sphericity hypotheses of Σ has been considered in Ledoit and
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Wolf (2002) and Chen et al. (2010). Cai and Jiang (2011) and Qiu
and Chen (2012) proposed tests for the bandedness of a covariance
matrix. See also Schott (2005) and Srivastava (2005) for other
formulations.

We propose a test regarding the super-diagonals of Σ , which
has much smaller scale than the existing tests, and targets on
global features of Σ , for instance the bandedness or specific
parametric structure. The smaller scale of the super-diagonal as
compared to the entire Σ does pose theoretical challenges when
establishing the asymptotic properties of the test statistic. This is
because the variation of the test statistic is much smaller, which
requires finer derivations in the asymptotic analysis. The benefits
of working with a test statistic being a smaller magnitude is a
reduced variance and an increased signal-to-noise ratio of the test,
which can produce more power than those targeting on the entire
covariance matrixΣ . Tests for overall structures of Σ can bemade
bymultiple testing on the super-diagonals in conjunction with the
false discovery rate or the Bonferroni procedure. We demonstrate
in the paper that the proposed test is useful to the inference
of spatial econometrical and statistical models on covariance,
which tends to be written in terms of the super-diagonals (Kapoor
et al., 2007; Baltagi et al., 2003; Lee and Yu, 2010; Rodríguez and
Bárdossy, 2014).

The paper is organized as follows. We outline the framework of
the testing problem, including the hypotheses, assumptions and
the proposed test statistics in Section 2. Section 3 provides the
theoretical properties of the test statistics and the multiple testing
procedure. In Sections 4 and 5, we discuss tests for bandedness
and parameter structures of Σ , respectively. Results of simulation
studies are provided in Section 6. An empirical analysis is reported
in Section 7. All technical details are given in Appendix.

2. Preliminaries

Consider a p-dimensional generic random vector X = (X1,
X2, . . . , Xp)

T , which has mean µ = (µ1, µ2, . . . , µp)
T and

covariance matrix Σ = (σi,j)p×p. The observed data Xi =

(Xi,1, . . . , Xi,p)
T , i = 1, . . . , n, are independent copies of X . For

q = 0, 1, . . . , p − 1, let Dq =
p−q

l=1 σ 2
l,l+q be the sum of the σ 2

i,j
along the qth super-diagonal,whereD0 represents that on themain
diagonal.

We consider testing covariance structures with respect to
the super- or sub-diagonals of Σ via Dq. We have two specific
covariance structures in mind. One is the nonparametric banded
structure in that σi,j = 0 for any |i − j| > k for an integer k. The
smallest such k is called the bandwidth of Σ . And the other is an
isomorphic parametric structure where σi,j = σ(|i − j|; θ) for a
finite dimensional parameter θ, which is a popular form in spatial
econometrics.

The banding structure can be produced by a moving average
structure such that, for i = 1, . . . , n,

Xi,l = µl +

k
j=0

γjZi,l−j,

where for each given i, µl is the mean of Xi,l and {Zi,1, Zi,2, . . .} is
a sequence of independent white noise with zero mean and unit
variance, Zi,j = 0 for j ≤ 0, and γ0 = 1. The integer k is the
bandwidth of Σ .

More generally, we consider testing certain parametric model
regarding the super-diagonal structure of Σ:

H0,q : Dq = Dq(θ) vs H1,q : Dq ≠ Dq(θ)

where Dq(θ) is a parametric form, for q = 1, 2, . . . , p − 1,
and θ is a finite dimensional parameter. For bandedness test,
Dq(θ) ≡ 0 for q > k. A motivation for such model comes

from the spatial econometrics or statistics where the Xi consists of
recordings at p locations. If {Xi,j}

p
j=1 is weakly stationary, σj,j+h =

Cov(Xi,j, Xi,j+h) = C(h) defines a covariance function C(·). Let
θ = (σ 2, φ)T and commonly used spatial models for C(·) include
the spherical model

C(h; θ) = σ 2 1 − 1.5(h/φ) + 0.5(h/φ)3

, φ > 0, h < φ;

the wave model

C(h; θ) = σ 2φ sin(h/φ)/h;

the exponential model

C(h; θ) = σ 2 exp (−h/φ) and

the Gaussian model

C(h; θ) = σ 2 exp

−h2/φ


.

See Cressie (1993), Kapoor et al. (2007), Baltagi et al. (2003), Lee
and Yu (2010) and Rodríguez and Bárdossy (2014) formore details.

The proposed test statistics for super-diagonals are based on an
unbiased estimator of Dq:

D̂q =

p−q
l=1

 1
P2
n

∗
i,j

(Xi,lXi,l+q)(Xj,lXj,l+q) −
2
P3
n

∗
i,j,k

Xi,lXk,l+q(Xj,lXj,l+q)

+
1
P4
n

∗
i,j,k,m

Xi,lXj,l+qXk,lXm,l+q


,

where


∗ denotes summation over mutually different subscripts,
and Pb

n = n!/(n − b)!. It is clear that D̂q is a linear combinations of
U-statistics. Without loss of generality, we assume µ = 0 since D̂q
is invariant to the location shift.

To quantify the dependence among components of the data
vector, we invoke the notion of α-mixing. The α-mixing coefficient
of the generic X = (X1, . . . , Xp)

T is defined as

αX (k) = sup
m∈Z

α(Gm
1 , G

p
m+k), (2.1)

where α(Gm
1 , G

p
m+k) = sup{|P(A ∩ B) − P(A)P(B)| : A ∈ Gm

1 ,

B ∈ G
p
m+k},G

m
1 andG

p
m+k are theσ -fields generated by {X1, . . . , Xm}

and {Xm+k, . . . , Xp}, respectively. If limk→∞ αX (k) = 0, the
sequence of components in X is said to be α-mixing. Furthermore,
we denote the eigenvalues of Σ as λmax(Σ) = λ1(Σ) ≥ λ2(Σ) ≥

· · · ≥ λp(Σ) = λmin(Σ).
Our test procedure does not require any explicit relationship

between the sample size n and the dimension p other than that
they both diverges to infinity. It allows p to be much larger than n,
that is, the ‘‘large p, small n’’ situation. We assume the following
conditions in our analysis.

A1 There are positive constants c and a ∈ (0, 1) such that
αX (k) ≤ cak.

A2 The eighthmoment of Xℓ is uniformly bounded, i.e. sup1≤ℓ≤p

E|Xℓ|
8

≤ M , for a positive constant M . There exists a positive
constant ϵ0, such that λmin(Σ) ≥ ϵ0 > 0.

A3 Data vectors Xi are generated by Xi = Γ Zi for i = 1, 2,
· · · , n, where Γ =


Γi,j

p×m is a p × m constant matrix, satisfying

Γ Γ ′
= Σ and m ≥ p, and Z1, Z2, · · · , Zn are independently and

identically distributed (IID) m-dimensional random vectors such
that E(Zi) = 0 and Var(Zi) = Im. Write Zi = (Zi,1, . . . , Zi,m)T . We
assume Zi,j have uniformly bounded 8th moment, and there exists
a finite constant ∆ such that E(Z4

i,j) = 3 + ∆ for j = 1, . . . ,m,

and E(Zℓ1
i,j1

Zℓ2
i,j2

· · · Zℓq
i,jq) = E(Zℓ1

i,j1
)E(Zℓ2

i,j2
) · · · E(Zℓq

i,jq) for any integers
ℓν ≥ 0 with

q
ν=1 ℓν ≤ 8 and distinct subscripts j1, . . . , jq.

The α-mixing coefficient in Assumption A1 can be relaxed to be
polynomial decay such that αX (k) ≤ ck−β for positive constants
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