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a b s t r a c t

Dynamic portfolio choice has been a central and essential objective for investors in active asset manage-
ment. In this paper, we study the dynamic portfolio choice with multiple conditioning variables, where
the dimension of the conditioning variables can be either fixed or diverging to infinity at certain polyno-
mial rate of the sample size. We propose a novel data-driven method to estimate the optimal portfolio
choice,motivated by themodel averagingmarginal regression approach suggested by Li et al. (2015).More
specifically, in order to avoid the curse of dimensionality associated with the multivariate nonparamet-
ric regression problem and to make it practically implementable, we first estimate the marginal optimal
portfolio choice by maximizing the conditional utility function for each univariate conditioning variable,
and then construct the joint dynamic optimal portfolio through the weighted average of the marginal
optimal portfolio across all the conditioning variables. Under some regularity conditions, we establish
the large sample properties for the developed portfolio choice procedure. Both the simulation study and
empirical application well demonstrate the finite-sample performance of the proposed methodology.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Portfolio choice is a central issue for investors and asset man-
agers. Financial research has clarified how thismight be carried out
to meet various objectives. Fundamental contributions to this lit-
erature have been made, inter alia, by: Markowitz (1952), Sharpe
(1963), Merton (1969), Samuelson (1969), and Fama (1970). See
Back (2010) and Brandt (2010) for some recent surveys. In prac-
tice, it is not uncommon that dynamic portfolio choice depends
on many conditioning (or forecasting) variables, which reflect the
varying investment opportunities over time. Generally speaking,
there are two ways to characterize the dependence of portfolio
choice on the conditioning variables. One is to assume a parametric
statistical model that relates the returns of risky assets to the con-
ditioning variables and then solve for an investor’s portfolio choice
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by using some traditional econometric approaches to estimate the
conditional distribution of the returns. However, the pre-assumed
parametric model might be misspecified, which would lead to in-
consistent or biased estimation of the optimal portfolio. The other
way, which avoids the possible issue of model misspecification, is
to use some nonparametric methods such as the kernel estima-
tionmethod to characterize the dependence of the portfolio choice
on conditioning variables. This latter method is first introduced by
Brandt (1999), who also establishes the asymptotic properties for
the estimated portfolio choice and provides an empirical applica-
tion.

Although the nonparametric method allows the financial data
to ‘‘speak for themselves’’ and is robust to model misspecification,
its performance is often poorwhen the dimension of the condition-
ing variables is large (say, larger than three), owing to the so-called
‘‘curse of dimensionality’’ (c.f. Fan and Yao, 2003). This indicates
that a direct use of Brandt’s (1999) nonparametric method may
be inappropriate when there are multiple conditioning variables.
Our main objective in this paper is to address this issue in dynamic
portfolio choice problem with multiple conditioning variables and
propose a novel data-driven method to estimate the optimal port-
folio choice,where the dimension of the conditioning variables and
the number of the risky assets can be either fixed or diverging to
infinity at certain polynomial rate of the sample size.
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In order to avoid the curse of dimensionality issue, we first
consider the optimal portfolio choice for a given univariate con-
ditioning variable, and then construct the joint dynamic optimal
portfolio choice through a weighted average of the marginal op-
timal portfolio across all the conditioning variables. This method
is partly motivated by the Model Averaging MArginal Regres-
sion (MAMAR) approach suggested in a recent paper by Li et al.
(2015), which shows that such a method performs well in esti-
mating the conditional multivariate mean regression function and
out-of-sample prediction. Furthermore, we introduce a semipara-
metric data-drivenmethod to choose the optimalweights inmodel
averaging. Under some mild conditions, we establish the large
sample properties for the developed portfolio choice procedure to
show its advantages over the conventional nonparametric kernel
smoothingmethod in terms of convergence. Both simulation stud-
ies and an empirical application are carried out to examine the fi-
nite sample performance of the proposed methodology.

The structure of the paper is as follows. The methodology for
estimating the dynamic portfolio choice is introduced in Section 2,
and the relevant large sample theory is presented in Section 3. The
data-driven choice of the optimal weights in model averaging of
the marginal optimal portfolios across all conditioning variables
is developed in Section 4. Numerical studies including both
simulation and an empirical application are reported in Section 5.
Section 6 concludes the paper. The assumptions and the technical
proofs of the main results are relegated to Appendices A and B,
respectively.

2. Methodology for estimating dynamic portfolio choice

Suppose that there are n risky assets with Rt = (R1t , . . . , Rnt)
ᵀ

as a vector of gross returns at time t , t = 1, . . . , T , where n can
be either fixed or diverging to infinity with the sample size T .
Let Xt = (X1t , . . . , XJt)

ᵀ
, where J is the number of conditioning

or forecasting variables Xjt . The dynamic portfolio choice aims to
choose the portfolio weights at each time period t by maximizing
the conditional utility function defined by

E

u(w

ᵀ
Rt)|Xt−1


= E


u(w

ᵀ
Rt)|(X1,t−1, . . . , XJ,t−1)


, (2.1)

subject to 1ᵀ

nw =
n

i=1wi = 1, where w = (w1, . . . , wn)
ᵀ
,

1n is the n-dimensional column vector of ones, u(·) is a concave
utility function which measures the investor’s utility with wealth
w

ᵀRt at time t . For simplicity, we only focus on the problem of
single-period portfolio choice. Furthermore, we assume that the
investors can borrow assets and sell them (short selling), which
indicates that some of the portfolio weights may take negative
values.

The classic mean–variance paradigm considers the quadratic
utility functionu(v) = v−(γ /2)v2 or theCARA (Constant Absolute
Risk Aversion) utility function u(v) = − exp(−γ v)plus normality,
in which case the solution (with covariates) is explicitly defined
in terms of the conditional mean vector µ(x) = E[Rt |Xt−1 = x],
x = (x1, . . . , xJ)

ᵀ
, and the conditional covariance matrix Σ(x) =

E[(Rt − µ(x))(Rt − µ(x))ᵀ |Xt−1 = x] of returns, i.e.,

w(x) =
1
γ

Σ−1(x) [µ(x)− θ(x)1n] ,

θ(x) =
µ(x)ᵀΣ−1(x)1n − γ

1ᵀ

nΣ
−1(x)1n

.

In this case, it suffices to know µ(·) and Σ(·). One may also work
with the more general CRRA (Constant Relative Risk Aversion)
utility function with risk aversion parameter γ

u(v) =


v1−γ

1 − γ
, γ ≠ 1

log v, γ = 1,

in which case the solution for the optimal weights is not typically
explicit, and generally depends onmore features of the conditional
distribution. More discussion on different classes of utility
functions u(·) can be found in Chapter 1 of the book by Back (2010).

In order to solve the general maximization problem in (2.1),
Brandt (1999) proposes a nonparametric conditional method of
moments approach, which can be seen as an extension of the
method of moments approach in Hansen and Singleton (1982).
Taking the first-order derivative of u(·) in (2.1) with respect to
wi and considering the constraint of 1ᵀ

nw =
n

i=1wi = 1, we
may obtain the dynamic portfolio choice by solving the following
equations forw1, . . . , wn−1:

E

(Rit − Rnt)u̇(w

ᵀ
Rt)|X1,t−1, . . . , XJ,t−1


= 0

a.s., i = 1, . . . , n − 1, (2.2)

where u̇(·) is the derivative of the utility function u(·). The last
element wn in w can be determined by using the constraintn

i=1wi = 1. Brandt (1999) suggests a kernel-based smoothing
method to estimate the solution to (2.2). However, when J is
large, the kernel-based nonparametric conditional method of
moments approach would perform quite poorly due to the curse
of dimensionality discussed in Section 1. Therefore, we propose a
novel dimension-reduction technique to address this problem.

We startwith the portfolio choice for each univariate condition-
ing variable in Xt−1. For j = 1, . . . , J , we define the marginal con-
ditional utility function as

E

u(w

ᵀ
Rt)|Xj,t−1 = xj


(2.3)

with the constraint 1ᵀ

nw =
n

i=1wi = 1. The associated
first-order conditions for the marginal optimal portfolio weights
wj(xj) evaluated at xj for the conditioning variables are:

E

(Rit − Rnt)u̇(w

ᵀ

j (xj)Rt)|Xj,t−1 = xj


= 0,

i = 1, . . . , n − 1, (2.4)

where

wj(xj) = [w1j(xj), . . . , wnj(xj)]
ᵀ

withwnj(xj) = 1 −

n−1
i=1

wij(xj).

For a given j, this is essentially the problem posed and solved by
Brandt (1999). For given x = (x1, . . . , xJ)

ᵀ
, (2.3) and (2.4) may be

understood as the utility function and the corresponding first order
conditions for portfolio choice in a ‘‘fictitious economy’’, where the
realization of each univariate conditioning variable determines the
state of the economy.

We next consider how to combine the marginal portfolios
selected above to form a joint portfolio. We shall consider a
weighted average of the marginal portfolio choices wj(xj) over
j = 1, . . . , J , and obtain the joint portfolio choice as

wa(x) =

J
j=1

ajwj(xj) with
J

j=1

aj = 1, (2.5)

where negative values for aj can be allowed. In Section 4, we
will discuss how to choose the weights a = (a1, . . . , aJ)

ᵀ
in the

combination (2.5) by using a data-driven method.
The joint portfolio choice wa(x) defined in (2.5) can, in some

sense, be seen as an approximation of the true optimal portfolio
choice, as we next discuss. Consider the following class of weights
(that are measurable functions of the covariates):

W =


w(·) :

n
i=1

wi(x) = 1
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