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a b s t r a c t

This paper proposes a flexible way of modeling dynamic heterogeneous covariance breakdowns in mul-
tivariate GARCH models through a stochastic component that allows for changes in the conditional vari-
ances, covariances and implied correlation coefficients. Different breakdown periods will have different
impacts on the conditional covariance matrix and are estimated from the data. We propose an efficient
Bayesian posterior sampling procedure and show how to compute the marginal likelihood. Applied to
daily stockmarket and bondmarket data, we identify a number of different covariance breakdownswhich
leads to a significant improvement in the marginal likelihood and gains in portfolio choice.
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1. Introduction

This paper proposes a flexible way of modeling dynamic
heterogeneous covariance breakdowns in multivariate GARCH
(MGARCH) models. During periods of normal market activity,
volatility dynamics are governed by an MGARCH specification. A
covariance breakdown is any significant temporary deviation of
the conditional covariance matrix from its implied MGARCH dy-
namics. A covariance breakdown is captured through a flexible
stochastic component that allows for changes in the conditional
variances, covariances and implied correlation coefficients.

It is widely acknowledged that markets face periods that are
characterized by abnormal behavior. Several approaches have
been used to capture changes in the dynamics of conditional
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second moments including dynamic copulas (Kenourgios et al.,
2011; Christoffersen et al., 2012), and the factor spline GARCH
model of Rangel and Engle (2012).1 Dufays (2013) uses an
infinite-state hiddenMarkovmodel to allow for parameter change
in Engle’s (2002) dynamic conditional correlationmodel. The path
dependence that the latent state variable causes in the GARCH
recursions is removed following the ideas in Klaassen (2002).2
Haas and Mittnik (2008) and Chen (2009) extend the univariate
MS-GARCH model in Haas et al. (2004) to a multivariate setting.
Theirmodel assumes there are K parallel MGARCHmodels running
at the same time,where K is the number of states. Silvennoinen and
Teräsvirta (2009) apply the smooth transition modeling approach
to conditional correlations. Other regime-switching approaches
include Ang and Bekaert (2004), Guidolin and Timmermann (2006)
and Pelletier (2006).

In contrast to the literature, which has tended to focus
on correlation breakdowns, we investigate breakdowns in each

1 It is important to account for changes in GARCH dynamics. For instance, in
the univariate setting, neglected parameter changes in volatility dynamics can bias
GARCH parameter estimates toward higher persistence and lead to poor forecasts
of volatility (Lamoureux and Lestrapes, 1990; Hillebrand, 2005).
2 Another approach to dealing with path dependence directly is the particle

MCMC approach of Bauwens et al. (2014).
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component of the conditional covariance matrix. This has several
advantages. First, we can see how conditional correlations are
affected through variances and covariances. Second, by modeling
the full covariance matrix we avoid issues of misspecification
by focusing only on correlations (Forbes and Rigobon, 2002)
and neglecting heteroskedasticity. In our model a covariance
breakdown does not necessarily imply a correlation breakdown
or contagion effect. It depends on the relative changes in the
conditional covariance and conditional variances. Empirically we
identify both covariance breakdowns which lead to correlation
changes and breakdowns which have little impact on correlations.

To our knowledge this is the first paper to explicitly model the
dynamics of conditional covariance breakdowns and estimate their
impacts. In our approach a covariance breakdown is any sustained
deviation of the conditional second moments from the covariance
matrix implied by the MGARCH specification. Each breakdown
period is different and estimated from the data. Covariance
breakdowns as well as normal periods are assumed to follow a
first-order Markov chain. Each breakdown is characterized by a
random matrix drawn from an inverse-Wishart distribution that
scales (multiplies) theMGARCHcovariancematrix.3 This stochastic
scale matrix can change several times over the course of a single
breakdown. This approach is very flexible and allows a single
breakdown to display different characteristics over time while
retaining a positive definite matrix. Since covariance breakdowns
are finite, they eventually end and we return to a model in
which theMGARCH dynamics solely determine conditional second
moments.

Ourmodel can be considered as an extension toMarkov switch-
ingmodels. Bayesian inference forMarkov regime-switchingmod-
els is usually carried out based on the forward-backward algorithm
of Chib (1996). Our approach is different than the conventional
regime-switching specification in which model parameters gov-
erning a time period are selected from a fixed parameter set. A
covariance breakdown is captured by introducing an exogenous
stochastic multiplicative component to the volatility matrix itself.
This requires a new posterior sampling approach for the states.We
construct an efficient sampling scheme to sample the unobserved
state variables as well as other fixed parameters.

Whether covariance breakdowns are supported by the data can
be formally assessed in the context of Bayesian model comparison
by making use of the marginal likelihood. We show how to
compute themarginal likelihood and design a particle filter for the
task.

The model is applied to daily excess returns on the S&P 500
index and short-term and long-term bonds over a twenty-five
year period. Including fat-tailed return innovations in the model
is important in distinguishing between outliers and sustained
covariance breakdowns. We compare our model to an MGARCH
model with Student-t innovations but with no breakdowns as well
as a version of that model subject to Markov switching. Bayes
factors strongly support the inclusion of covariance breakdowns.
The volatility dynamics during breakdown periods are very
different for the models as well as breakdowns being different
over time. For example, in the recent financial crisis we identify an
initial breakdown which leads to an overall increase in variability.
This features large increases in conditional variances and drops
in covariances between the stock and bond market. However, the
conditional correlations do not show a dramatic change. Following
this episode is another breakdown which is characterized as a
reduction in overall variability.

3 To be precise, a positive definitematrix drawn from an inverse-Wishart density
is sandwiched between the Cholesky decomposition of the MGARCH matrix.

Estimates indicate that covariance breakdowns occur 42% of the
time and their expected duration is 1.5 months in our sample. The
impact of a typical covariance breakdown is expected to increase
variability. In addition to improving the fit of the data, modeling
covariance breakdowns provides improved portfolio choice.

The rest of the paper is organized as follows. In Section 2,
we introduce the breakdown model and discuss its properties.
Section 3 constructs a sampling procedure for the posterior
inference of the model. Section 4 provides simulation study
for illustration. Section 5 shows how to compute the marginal
likelihood of our model. In Section 6, we apply the model to study
the volatility dynamics among the stock market and the bond
market and Section 7 concludes. The Appendix contains details on
posterior sampling and computation of the marginal likelihood.

2. Multivariate GARCH with covariance breakdowns

Consider a k-dimensional vector time series yt , t = 1, 2, 3, . . . .
Let Ft−1 be the sigma field generated by the past values of yt until
time t − 1. Consider the following model

yt = µ + H1/2
t Λ

1/2
t zt , (1)

where µ = E(yt |Ft−1) is the constant conditional mean4 vector
and zt ∼ NID(0, I).5 H1/2

t denotes the Cholesky factor of the k × k
positive definite matrix Ht , which is assumed to follow any of the
popular specifications for the MGARCH model. Popular examples
of MGARCH models include, among others, the vector-diagonal
GARCH (VDGARCH) by Ding and Engle (2001) and the dynamic
conditional correlation (DCC) by Engle (2002). See Bauwens et al.
(2006) for a review.

The dynamics of Λt depend on a latent discrete state variable
st ∈ {1, 2, 3}. st follows a Markov chain whose transition matrix is
represented as

P =


π1 1 − π1 0

(1 − π2)π4 π2 (1 − π2)(1 − π4)
(1 − π3)π5 (1 − π3)(1 − π5) π3


, (2)

with each πi ∈ [0, 1], i = 1, . . . , 5 being a free parameter.
According to (2), moving directly from state 1 to state 3 is
prohibited but all other moves are possible. While in state 2, the
probability of staying is π2; conditional on leaving, the probability
of moving into state 1 is π4. Similarly, while in state 3, the
probability of staying is π3; conditional on leaving, the probability
of moving into state 1 is π5 and the probability of moving to state
2 is (1 − π5).

Let s1:t = {s1, . . . , st}. Λt is then determined as follows

Λt |s1:t =

I if st = 1
Λt−1 if st = st−1
∼G0 if st ≠ st−1 and st ≠ 1.

(3)

Thus, when st = 1, Λt is the identity matrix. If st does not change,
neither does Λt . Whenever st switches into 2 or 3, Λt is a new
stochastic draw from G0.

st divides the sample path into periods of normal states (st = 1)
and periods of covariance breakdown states (st = 2 or st = 3).
Switches out of state 1 and back into state 1 delineate a covariance
breakdown. Therefore, a breakdown can be characterized by a
sequence of states all equal to 2with one associatedΛt (1,2,2,2,2,1)
or by alternating between states 2 and 3 (1,2,2,3,3,3,2,2,1) along
with a different draw for Λt every time the state switches

4 A time-varying conditional mean can also be used.
5 Other distributions such as a Student-t could be used for zt as long as a normal

decomposition can be admitted.
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