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a b s t r a c t

This paper is concerned with white noise testing and model diagnostic checking for stationary functional
time series. To test for the functional white noise null hypothesis, we propose a Cramér–von Mises
type test based on the functional periodogram introduced by Panaretos and Tavakoli (2013a). Using
the Hilbert space approach, we derive the asymptotic distribution of the test statistic under suitable
assumptions. A new block bootstrap procedure is introduced to obtain the critical values from the non-
pivotal limiting distribution. Compared to existing methods, our approach is robust to the dependence
within white noise and it does not involve the choices of functional principal components and lag
truncation number. We employ the proposed method to check the adequacy of functional linear models
and functional autoregressivemodels of order one by testing the uncorrelatedness of the residuals. Monte
Carlo simulations are provided to demonstrate the empirical advantages of the proposed method over
existing alternatives. Our method is illustrated via an application to cumulative intradaily returns.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Functional data analysis (FDA) has emerged as an important
area of statistics which provides convenient and informative tools
for the analysis of data objects of high dimension/high resolution,
and it is generally applicable to problems which are difficult to
cast into a framework of scalar or vector observations. In many
applications, especially if data are collected sequentially over
time, it is natural to expect that the observations exhibit certain
degrees of dependence. During the past decade, there is a growing
body of research on parametric and nonparametric inference for
dependent functional data. We refer the interested readers to
the excellent monograph by Horváth and Kokoszka (2012). In
this article, our interest concerns white noise testing (testing for
serial correlation) for functional observations, and its application
to model diagnostic checking.

In the univariate/multivariate time series context, white noise
testing is a classical problem which has attracted considerable
attention. There is a huge literature on the white noise testing
problem and the existing tests can be roughly categorized into two
types: time domain correlation-based tests and frequency domain
periodogram-based tests (see e.g. Durlauf, 1991; Hong, 1996;
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Deo, 2000, among others). In the functional time series context,
developments have been mainly devoted to the time domain
based approaches. For example, Gabrys and Kokoszka (2007)
proposed a portmanteau test for testing the uncorrelatedness
of a sequence of functional observations. Horváth et al. (2013)
proposed an independence test based on the sum of the L2 norms
of the empirical correlation functions. The validity of these tests is
justified under the independent and identically distributed (i.i.d)
assumption, and thus they are not robust to dependent white noise.
In the univariate setting, the distinction between an i.i.d sequence
and an uncorrelated sequence in the diagnostic checking context
has been found to be important. On one hand, some commonly
used nonlinear time series models, such as ARCH/GARCH models
imply white noise but are dependent. On the other hand, the
limiting null distributions of some commonly used test statistics,
such as Box and Pierce’s portmanteau test, are obtained under the
i.i.d assumption, and they are no longer valid under the assumption
of dependent white noise (Romano and Thombs, 1996; Lobato
et al., 2002; Francq et al., 2005; Horowitz et al., 2006; Shao, 2011b).
In the functional setting, this distinction is again important. For
example, a functional ARCH(1) process (FARCH(1)) is a functional
white noise but is dependent (Hörmann et al., 2013). In this
paper, we propose a spectra-based testing procedure which is
robust to the dependence within the white noise sequence. Our
test is constructed based on the periodogram function recently
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introduced by Panaretos and Tavakoli (2013a) and it has nontrivial
power against Pitman’s local alternatives that are within a

√
T -

neighborhood of the null hypothesis, where T denotes the sample
size. Our test also avoids projecting functional objects onto a space
whose dimension is held fixed in the asymptotics. Under suitable
weak dependence assumptions, we show that the spectra-based
test has a non-pivotal limiting distribution. To conduct inference,
we introduce a novel block bootstrap procedure which is able
to imitate the limiting null distribution. It is worth pointing out
that when the white noise is a martingale difference sequence in
a functional space, the block size in our bootstrap procedure is
allowed to be one.

In statistical modeling, diagnostic checking is an integrable part
of model building. A common way of testing the adequacy of
the proposed time series model is by checking the assumption of
white noise residuals. Systematic departure from this assumption
implies the inadequacy of the fitted model. We employ the
proposed white noise testing procedure to test the goodness of fit
for functional linear models and functional autoregressive models
of order one (FAR(1)) with uncorrelated but possibly dependent
errors. Diagnostic checking in functional linear models has been
studied by Chiou and Müller (2007) and Gabrys et al. (2010). The
latter authors proposed two inferential tests (GHK tests hereafter)
for error correlation. The main differences between our test and
the GHK tests are threefold. First, our test is constructed based on
the L2 norm of the periodogram function, and it does not involve
the choices of functional principal components and lag truncation
number which are required in the GHK tests. Second, we do not
assume any asymptotic independence under the null of the errors
while the asymptotic validity of the GHK tests is established under
the independence assumption. The asymptotic null distribution
of our test depends on the underlying data generating process
(DGP) and is no longer pivotal. We justify the validity of the
proposed block bootstrap procedure when applied to the residuals
in Section 3.1. Third, we employ the truncated regularization to
estimate the functional linear operator, where the underlying
dimension is allowed to grow slowly with the sample size. While
for Gabrys et al.’s approaches, a linear model is constructed and
estimated via least squares after projecting the functional objects
onto a space whose dimension is fixed in the asymptotic analysis.

Furthermore, we apply the proposed method to check the
adequacy of FAR(1) models. The FAR(1) model is conceptually sim-
ple as it is an extension of the univariate AR(1) model to the
functional setup, yet very flexible because the autoregressive op-
erator acts on a Hilbert space whose elements can exhibit any
degree of nonlinearity. Various nonparametric and prediction
methods for the FAR(1) models have been developed, and numer-
ous applications have been found; see Besse et al. (2000), Laukaitis
and Rac̆kauskas (2002), Antoniadis and Sapatinas (2003), Fernán-
dez de Castroa et al. (2005), Kargin and Onatski (2008), among oth-
ers. In spite of the wide use of the FAR(1) models, there seems no
systematic methods available to check for the goodness of fit. In
this paper, we shall fill in this gap by applying the spectra-based
test to test the uncorrelatedness of the residuals. In contrast to the
case of functional linear models, the estimation effect induced by
replacing the unobservable innovations with their estimates is not
asymptotically negligible due to the dependence structure of the
FAR(1) models. To circumvent the difficulty, we further propose a
modified block bootstrap that takes the estimation effect into ac-
count.

Finally, we point out that spectral analysis of stationary
functional time series has been recently advanced by Panaretos
and Tavakoli (2013a,b) and Hörmann et al. (2015). We refer to
Panaretos and Tavakoli (2013a) for many interesting details on
estimation and asymptotics of the spectral density operator.

The layout of the article is as follows.We introduce the spectra-
based test in Section 2.1. To obtain the critical values from the
limiting null distribution, we propose a block bootstrap procedure
in Section 2.2. A general class of test statistics is discussed in
Section 2.3. We employ the proposed method to test the goodness
of fit for the functional linear models and the FAR(1) models in
Section 3. Section 4 is devoted to the finite sample performance
of the proposed method including simulations and an application
to cumulative intradaily returns. Section 5 concludes. The proofs
are postponed to Section 6 and the online supplementary material
(see Appendix A).

2. White noise testing

Notation: Let ı =
√

−1 be the imaginary unit. Denote by I a
compact set of a Euclidian space. Let Ik be the Cartesian product
of k copies of I with k ∈ N, and A := [0, 1] × I × I. Denote
by L2(J) the Hilbert space of square integrable functions defined
on J, where J = Ik or A. For any functions f , g ∈ L2(J), the
inner product between f and g is defined as ⟨f , g⟩ =


J
f (τ )g(τ )dτ

and ∥·∥J denotes the inner product induced norm. Let ∥·∥ :=

∥·∥I. Assume that the random elements all come from the same
probability space (Ω,F ,P ). Denote by LpH the space of H := L2(I)
valued random variables X such that (E∥X∥

p)1/p < ∞. For any
compact operator, denote by |||·|||1, ∥·∥L and ∥·∥S the nuclear norm,
the uniform norm and the Hilbert–Schmidt norm respectively.
Let Re(·) and Im(·) be the real part and the imaginary part of
a complex number. Without ambiguity, we shall use the same
symbol for operator and the kernel associated with the operator
in the following discussion.

2.1. Spectra-based test

For the ease of presentation, we consider a sequence of mean-
zero stationary functional time series {Xt(τ )}

+∞

t=1 defined on a
compact set I. With suitable modifications on the arguments,
the results are expected to be extended to the situation with
nonzero mean function. The lag-h autocovariance function for {Xt}

is defined as γh(τ1, τ2) = EXt(τ1)Xt−h(τ2) with τ1, τ2 ∈ I, and
the corresponding autocovariance operator is given by γh(·) =

E⟨Xt−h, ·⟩Xt . Following Panaretos and Tavakoli (2013a), we define
the spectral density kernel as

fω(τ1, τ2) :=
1
2π

+∞
h=−∞

γh(τ1, τ2) exp(−ıhω), ω ∈ [−π, π]. (1)

Given the functional observations {Xt}
T
t=1 where T is the sample

size,we are interested in testingwhether the functional time series
{Xt} has serial correlation in a functional space. In other words, we
want to test the null hypothesis

H0 : fω(τ1, τ2) = γ0(τ1, τ2)/(2π), for any ω ∈ [−π, π],

versus the alternative that

Ha : fω(τ1, τ2) ≠ γ0(τ1, τ2)/(2π), for some ω ∈ [−π, π],

i.e., γh(τ1, τ2) ≠ 0 for some lag h. To introduce the testing
procedure, we define the discrete Fourier transform (DFT) of
{Xt}

T
t=1 to be

X̃ω(τ ) :=
1

√
2πT

T
t=1

Xt(τ ) exp(−ıtω). (2)
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