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a b s t r a c t

I propose a bias-corrected non-parametric estimator of the covariation matrix of log security prices,
designed as a convex combination of two realized kernels. The estimator is simple but possesses desirable
statistical properties including consistency, asymptotic normality and the parametric rate of convergence
in the presence of persistent, diurnally heteroskedastic and endogenous microstructure effects. It is
robust to the asynchronous trading of multiple securities with persistent and endogenous refresh-time
durations. I also prove the consistency of a subsampling-based estimator of the asymptotic covariance
matrix of the proposed estimator. In simulations, the non-linear functions of the proposed estimator
exhibit smaller bias than those based on a realized kernel, while only slightly increasing the variance.
Thereby, the proposed estimator reduces the mean squared error.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The covariation matrix is a multivariate and stochastic gener-
alization of the univariate constant volatility parameter in con-
tinuous time finance models. It is central to important financial
quantities, such as the no-arbitrage price of an optionwith stochas-
tic volatility, optimal portfolio allocation, hedge ratios, market be-
tas, and correlations among security returns. However, estimating
the covariation matrix is difficult for several reasons. First, the in-
tegral is defined over a continuous time interval, but the available
data are discrete. In any estimator, the discretization error creates
an extra covariance component, which depends on the frequency
of available data. Second, observed prices may exhibit a market
microstructure effect, capturing imperfections and measurement
errors in the market. The cumulative microstructure effect hin-
ders the use of data recorded at very high frequency so that n1/2-
consistency is infeasible given n observations of returns. Third, the
microstructure effect may persist with an unknown pattern. If the
persistence of the microstructure effect is incorrectly specified, it
may interferewith an otherwise consistent estimator of the covari-
ation, which invalidates a parametric approach. Fourth, the dura-
tions of intra-daily sampling times may be neither synchronized
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among multiple securities, nor exogenous from the evolution of
themarket risk. The formermay cause the under-estimation of co-
movement among severalmarkets (Epps, 1979), and the lattermay
influence the asymptotic bias and covariance of the estimator.

The previous studies have gradually fixed these issues. Gloter
and Jacod (2001, (2.4)) indicate the convergence rate n1/4 for
the volatility estimation in a noisy environment. Aït-Sahalia,
Mykland and Zhang (AMZ, 2005, Proposition 1) have already
recognized the importance of a joint estimation of the volatility
and the microstructure variance to achieve the rate n1/4 for
the former in their maximum likelihood framework. Zhang,
Mykland and Aït-Sahalia (ZMA, 2005) incrementally improve
a sparse-sampling realized variance estimator by subsampling,
averaging, and two-scale bias-correcting to arrive at the first
consistent non-parametric estimator with the rate n1/6, which is
improved to n1/4 by Zhangs’s (2006) multi-scale bias correction.
The volatility estimation with random sampling times is an active
area of recent research. For a subsampling-based approach with
a bias correction, see Li, Mykland, Renault, Zhang, and Zheng
(LMRZZ, 2014) in a univariate case without a microstructure
effect, Li, Zhang and Zheng (LZZ, 2013) in a univariate case
with a serially independent microstructure effect, and Bibinger
and Mykland (2014) in a multivariate case with a serially
independent microstructure effect. Aït-Sahalia, Fan and Xiu (AFX,
2010) and Shephard and Xiu (SX, 2014) extend Xiu’s (2010) quasi
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maximum likelihood framework in which researchers deliberately
mis-specify the stochastic volatility matrix as constant. Their
estimators achieve consistency (AFX, Theorem 3) and the joint
asymptotic mixed normality (SX, Assumption 6 and Equation
(9)) given independence of sampling times from the efficient
price and serial independence of microstructure effects. Bibinger
et al. (2014, p.1319 and Theorem 4.4) provide a multivariate
extension of Reiss’s (2011) semi-parametric efficiency bound
for their local method-of-moment estimator in the spectral
domain. The benefit of a spectrum-based approach is natural,
because the realized kernel approach (Barndorff-Nielsen et al.,
2008; Ikeda, 2015) and the pre-averaging approach (Jacod, 2012;
Christensen et al., 2010) resemble the kernel-based and tapering-
based spectrum estimation (Priestley, 1981, Section 6.2 and
Brillinger, 2001, Section 5.2). Koike (2014, 2016) apply Hayashi
and Yoshida’s (2005) estimator of the covariation to pre-averaged
data given endogenous sampling times and a serially independent
microstructure effect. Jacod and Mykland (2015, Theorem 4.1 and
Remark 4.4) show that their univariate pre-averagingmethodwith
an adaptive local pre-averaging window can achieve the semi-
parametric efficiency bound up to some constant scale. Note that
all of these recent studies rely on independence of sampling times
from the efficient price process and/or on serial independence of
microstructure effects. A desirable estimator of the covariation
should simultaneously alleviate all of these complications.

Barndorff-Nielsen,Hansen, Lunde and Shephard (BNHLS, 2011b)
develop the first non-parametric covariation matrix estimator in
the presence of a persistent microstructure effect. This estimator
is called a realized kernel because it constitutes a kernel-weighted
sum of sample autocovariation matrices of log price vectors. Real-
ized kernels dealwith apersistentmicrostructure effect by increas-
ing the number of autocovariation matrices in a data-dependent
manner. Unfortunately, the limiting distribution of this estima-
tor is asymptotically biased by the long-run covariance of the mi-
crostructure effect. Consequently, the estimator converges at a
rate slower than n1/4. Moreover, non-linear functions of a finite-
sample estimate become strongly biased. To simultaneously solve
the above problems, this paper proposes a new non-parametric es-
timator of the covariation matrix with a built-in asymptotic bias
correction. In constructing this estimator, I reformulate the prob-
lem as a joint estimation of the covariation of the efficient log
price and the long-run covariance of the microstructure effect. By
jointly estimating these two variations within the realized kernel
framework, I create a new estimator of the covariation; a particular
convex combination of two different realized kernels, which I
therefore name the ‘‘Two-Scale Realized Kernel’’ estimator. The
convex combination defining the estimator automatically elim-
inates the asymptotic biases of the two realized kernels in the
proposed estimator. The built-in asymptotic bias correction also
centers the limiting distribution of the estimator at the true quan-
tity. This result is intuitive because the long-run covariance is
jointly estimated with the covariation; hence, the former is no
longer a nuisance parameter for the latter. The method also pro-
duces a new estimator of the long-run covariance of a persistent
microstructure effect.

Becausemy estimator reduces the asymptotic bias, it converges
more rapidly than that of the realized kernel because the band-
width parameter can be designed to minimize the asymptotic co-
variance. Particularly, my estimator achieves an n1/4-consistency
in the presence of all of the aforementioned complications in
high-frequency financial data, thereby solving the issues raised by
LMRZZ (2014, Remarks 5 and 6). Moreover, this rate is robust
to persistence, heteroskedasticity, and endogeneity in both mi-
crostructure effects and refresh-time durations imposed on mul-
tiple securities. I also establish a subsampling-based estimator of

the asymptotic covariance of the proposed estimator and its con-
sistency, facilitating an asymptotically valid inference. In simula-
tion studies, the non-linear functions of my estimator reduce the
biases in finite sampleswhile only slightly increasing the variances.
Consequently, the estimator tends to yield a smaller mean squared
error (MSE) than the realized kernel. My estimator also appears
robust to serially- and cross-sectionally dependent microstruc-
ture effects and asynchronous sampling durations. Because the
subsampling, kernel and pre-averaging approaches share some
asymptotic equivalence (BNHLS, 2008; Jacod et al., 2009; Bibinger
and Mykland, 2014), this paper will be useful in extending these
recent studies for a more general microstructure effect.

2. Basic setup and motivation

2.1. Model and assumptions

The setup is based on the constructs of BNHLS (2011b), Jacod
(2012), and Ikeda (2015).1 All integrals are defined element-wise
under appropriate integrability and measurability conditions. The
first difference operator with respect to any discrete index is
denoted by ∆, and the Frobenius norm of any matrix A is given
by ∥A∥ := tr(A′A). d ∈ N is the number of risky securities,
Id is the d × d identity matrix, 0d and Od are zero matrices of
respective sizes d × 1 and d × d, and A|B is the variable A under
the condition B. Other notations are the Kronecker product ⊗, the
indicator function 1{·}, x±

:= max{±x, 0} for x ∈ R, the interval
[0, 1] of the trading period under consideration, the continuous-
time indices s, t ∈ [0, 1], the covariation matrix ⟨X, Y ⟩t ∈ Rd×d

of two processes Xs, Ys ∈ Rd for s ∈ [0, t] ⊂ [0, 1] (Protter,
2005, p. 66), and ⟨X⟩t := ⟨X, X⟩t . A process (Xt) is called uniformly
Lq-bounded (q ∈ N) if supt E[∥Xt∥

q
] < ∞. A collection of non-

random multiple-indexed matrices Ωa1,...,ak is called q-summable
(q ∈ N) if


ai∈Z(1 + |ai|q)∥Ωa1,...,ak∥ < ∞ for any i = 1, . . . , k.

Assumption 1. (A-1) (A,F ,P ) is a complete probability space
with two independent filtrations G = (Gt)t∈[0,1] and H =

(Ht)t∈[0,1] satisfying the usual conditions, G = G1, and
Et [·] := E[·|Gt ].

(A-2) Trading times of multiple securities are synchronized at
refresh times {ti}i=1,...,n+2m−1 for n,m ∈ N given m = o(n)
(BNHLS, 2011b), and∆ti = Dn,i/n for i ≥ 2.
(a) Dn,i is Gti-measurable, uniformly positive and uniformly

L4-bounded.
(b) Et⌊ns⌋−1 [D

r
n,⌊ns⌋]

p
→ Xr,s as n → ∞ for any r ∈ (0, 2] and

any s ∈ (0, 1].
(c) Xr,s is left continuous at any s ∈ (0, 1], 0 < Xr,s < ∞

and ⟨Xr⟩1 < ∞ uniformly.
(A-3) p(ti) is the d × 1 vector of log security prices in the refresh-

time sampling such that

p(ti) = p∗(ti)+ ϵ(ti) (1)

in which ϵ(ti) = u(ti) + v(ti), u(ti) = ξti ūti , and v(ti) =

n1/2
γ∈Z ψγ ,ti−γ−1∆Wti−γ .

(a) ξt is G-adapted, positive definite, uniformly bounded,
and Lipschitz continuous.

(b) ūti is (Hti)-adapted, zero-mean,α-mixing of size−ϖ/(ϖ
− 4), uniformly Lϖ -bounded, and fourth-order station-
ary with ϖ -summable jth order cumulant matrices
Ω̄a1,...,aj−1 (j = 2, 3, 4; a1, . . . , aj−1 ∈ Z) for some
ϖ > 4.

1 Special thanks to Jean Jacod for kindly providing an earlier draft of Jacod (2012).



Download English Version:

https://daneshyari.com/en/article/5095723

Download Persian Version:

https://daneshyari.com/article/5095723

Daneshyari.com

https://daneshyari.com/en/article/5095723
https://daneshyari.com/article/5095723
https://daneshyari.com

