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a b s t r a c t

We study an approximate factor model in the presence of both cross sectional dependence and
heteroskedasticity. For efficient estimations it is essential to estimate a large error covariance matrix.
We estimate the common factors and factor loadings based on maximizing a Gaussian quasi-likelihood,
through penalizing a large covariance sparse matrix. The weighted ℓ1 penalization is employed. While
the principal components (PC) based methods estimate the covariance matrices and individual factors
and loadings separately, they require consistent estimation of residual terms. In contrast, the penalized
maximum likelihood method (PML) estimates the factor loading parameters and the error covariance
matrix jointly. In the numerical studies, we compare PML with the regular PC method, the generalized
PC method (Choi 2012) combined with the thresholded covariance matrix estimator (Fan et al. 2013), as
well as several related methods, on their estimation and forecast performances. Our numerical studies
show that the proposed method performs well in the presence of cross-sectional dependence and
heteroskedasticity.

© 2015 Published by Elsevier B.V.

1. Introduction

In many applications of economics, finance, and other scientific
fields, researchers often face a large panel dataset in which there
are multiple observations for each individual; here individuals
can be families, firms, countries, etc. One useful method for
summarizing information in a large dataset is the factor model:

yit = αi + λ′

0ift + uit , i ≤ N, t ≤ T , (1.1)

where αi is an individual effect, λ0i is an r × 1 vector of factor
loadings and ft is an r × 1 vector of common factors; uit denotes
the idiosyncratic component of the model. Note that yit is the
only observable random variable in this model. If we write yt =

(y1t , . . . , yNt)′, Λ0 = (λ01, . . . , λ0N)′, α = (α1, . . . , αN)′ and
ut = (u1t , . . . , uNt)

′, then model (1.1) can be equivalently written
as

yt = α + Λ0ft + ut .
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An efficient estimation of the factor loadings and factors
should take into account both cross-sectional dependence and
heteroskedasticity. This paper uses the penalized maximum
(quasi) likelihood estimation under large N, T . The maximum
likelihood estimator depends on estimating a high-dimensional
covariance matrix Σu0 = cov(ut), which is a difficult problem
when it is non-diagonal and N/T → ∞. Recently, Bai and Li
(2012a) studied the maximum likelihood estimation when Σu0 is
a diagonal matrix. As was shown by Chamberlain and Rothschild
(1983), it is desirable to allow dependence among the error terms
{uit}i≤N,t≤T not only serially but also cross-sectionally. This gives
rise to the approximate factor model. With approximate factor
models, Doz et al. (2012) considered the consistency of MLE
for ft , restricting a diagonal error covariance matrix. Bai and Li
(2012b) estimated an approximate factor model for both factors
and factor loadings with MLE, also restricting a diagonal error
covariance matrix, and derived the limiting distributions of the
estimators. These are shrinkage estimators that shrink the off
diagonal elements of Σu0 to zero.

In addition to the diagonal elements, this paper also estimates
the off-diagonal elements of Σu0, which has O(N2) number of pa-
rameters. The key assumption we make is that the model is con-
ditionally sparse, in the sense that Σu0 is a sparse matrix with
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bounded eigenvalues. This assumption requires many off-diagonal
elements of Σu0 to be zero or nearly so, but still allows the iden-
tities of the sparse positions to be unknown. The conditional
sparsity, though slightly stronger than the assumptions in Cham-
berlain and Rothschild (1983), is meaningful in practice. For exam-
ple,when the idiosyncratic components represent firms’ individual
shocks, they are either uncorrelated or weakly correlated among
the firms across different industries, because the industry specific
components are not necessarily pervasive for the whole economy
(Connor and Korajczyk, 1993). Under the sparsity assumption, Fan
et al. (2013) proposed a thresholding method to consistently esti-
mate Σu0 when N > T . Their method is based on the traditional
principal components method, and does not improve the estima-
tion of factors and loadings. This paper proposes a maximum like-
lihood (ML)-based method that simultaneously estimate the error
covariance matrix and loadings, taking into account both cross-
sectional correlations and heteroskedasticity.

Let ȳ =
1
T

T
t=1 yt , and Sy =

1
T

T
t=1(yt − ȳ)(yt − ȳ)′ be the

sample covariance matrix based on the observed data. The quasi-
likelihood function is

L(Λ, Σu, Sf )

=
1
N

log |ΛSf Λ′
+ Σu| +

1
N
tr(Sy(ΛSf Λ′

+ Σu)
−1), (1.2)

where Sf =
1
T

T
t=1(ft− f̄ )(ft− f̄ )′, with f̄ =

1
T

T
t=1 ft . In addition,

a weighted ℓ1-penalty is attached to penalize the estimation of
off-diagonal entries. So we are solving the following optimization
problem:

min
Λ,Σu,Sf


L(Λ, Σu, Sf ) +


i≠j

µN,Twij|Σu,ij|


where the weight wij is the entry-dependent weight; µN,T is
a tuning parameter. We provide data-dependent choices for
{wij}i,j≤N and µN,T , as well as the corresponding theories.

There has been a large literature on estimating model (1.1).
Stock and Watson (1998; 2002) and Bai (2003) considered the
principal components analysis (PC), which essentially treats uit
to have the same variance across i, and is inefficient. Choi
(2012) proposed a generalized PC; also see Breitung and Tenhofen
(2011). Additional literature on factor models includes, for
example, Tsai and Tsay (2010), Bai and Ng (2002), Wang (2009),
Dias et al. (2013), Han (2012), among others. Most of these
studies are based on the PC method, which is inefficient under
cross-sectional heteroskedasticity with unknown dependence
structures. Moreover, this paper studies high-dimensional static
factor models although the factors and errors can be serially
correlated. For generalized dynamic factor models, the readers
are referred to Forni et al. (2000; 2005), Forni and Lippi (2001),
Hallin and Liška (2007), among others. Our estimation method is
maximum likelihood (ML) based, in which no spectral analysis is
involved. The ML-based estimation allows for over-identification
restrictions to be imposed on the loadings (in a similar way as
Bai and Wang (2015)) and allows for forecasting in the spirit of
Giannone et al. (2008).

The theoretical results of our paper are only about the
consistency of the estimators, although some convergence rate
of the covariance estimator is presented in Lemma B.2 in the
Appendix, which is not minimax optimal. We admit that due to
the technical difficulty, it is challenging to derive the optimal (or
near optimal) rate of convergence, and further research on the
optimal rate is needed in the future. This paper aims to propose a
novelML-basedmethod for estimating approximate factormodels,
and illustrates its appealing features to use in practice. We shall
elaborate the advantages of ML-based methods in Section 2.2. In

addition, we assume the number of factors r to be known. Both
N and T diverge to infinity and r is fixed. In practice, r can be
estimated from the data, and there has been a large literature
addressing its consistent estimation, for example, Bai and Ng
(2002), Kapetanios (2010), Onatski (2010), Alessi et al. (2010),
Hallin and Liška (2007), and Lam and Yao (2012), among others.

The recent work by Fan et al. (2013) focuses on the covariance
estimation using the regular PC. In contrast, we focus on efficiently
estimating the factors, loadings, and the covariance matrices
simultaneously using penalized MLE. Hence we focus on different
estimation problems. The maximum likelihood method has been
one of the fundamental tools for statistical estimation and
inference.

Our approach is also closely related to the large covariance
estimation literature, which has been rapidly growing in recent
years. Our penalization procedure is similar to the method in Lam
and Fan (2009), Bien and Tibshirani (2011), etc. However, as we
described above, our approach is still quite different from theirs
in the sense that the penalized ML method considered in this
paper estimates the loadings and error covariance matrix jointly.
A major difficulty is that the likelihood function being considered
contains a few fast-diverging eigenvalues thanks to Λ0Λ

′

0. One
of our main objectives is to show that maximizing the Gaussian
likelihood function involving fast-diverging eigenvalues can still
achieve consistency. Other works on large covariance estimation
include, for example, Cai and Zhou (2012), Bickel and Levina
(2008), Fan et al. (2008), Jung and Marron (2009), Witten et al.
(2009), Deng and Tsui (2013), Yuan (2010), Ledoit andWolf (2012),
El Karoui (2008), Pati et al. (2012), Rohde and Tsybakov (2011),
Zhou et al. (2011) and Ravikumar et al. (2011), etc.

The paper is organized as follows. Section 2 defines the si-
multaneous estimation using penalized MLE, and discusses the
advantages of ML-based methods. Section 3 presents theoretical
analysis. Section 4 discusses computational issues and implemen-
tations. Section 5 numerically compares the proposed methods
with competing ones in the literature on both estimation and time
series forecasts, using simulated and real data. Finally, Section 6
concludes with further discussions. All proofs are given in the Ap-
pendix.

Notation
Let λmax(A) and λmin(A) denote the maximum and minimum

eigenvalues of a matrix A respectively. Also let ∥A∥1, ∥A∥ and ∥A∥F
denote the ℓ1, spectral and Frobenius norms of A, respectively.
They are defined as ∥A∥1 = maxi


j |Aij|, ∥A∥ =

√
λmax(A′A),

∥A∥F =
√
tr(A′A). Note that when A is a vector, both ∥A∥ and ∥A∥F

are equal to the Euclidean norm. For two sequences aT and bT , we
write aT ≪ bT , and equivalently bT ≫ aT , if aT = o(bT ) as T → ∞.
Also, aT ≍ bT if aT = o(bT ) and bT = o(aT ).

2. Simultaneous estimation based on maximum likelihood

The approximate factor model (1.1) implies the following
covariance decomposition:

Σy0 = Λ0 cov(ft) Λ′

0 + Σu0, (2.1)

assuming ft to be uncorrelated with ut , where Σy0 and Σu0 denote
theN×N covariancematrices of yt and ut ; cov(ft) denotes the r×r
covariance of ft , all assumed to be time-invariant. The approximate
factor model typically requires the idiosyncratic covariance Σu0
have bounded eigenvalues and Λ′

0Λ0 have eigenvalues diverging
at rateO(N). One of the key concepts of approximate factormodels
is that it allows Σu0 to be non-diagonal.
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