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a b s t r a c t

Measurement errors are often correlated, as in surveys where respondent’s biases or tendencies to err
affect multiple reported variables. We extend Schennach (2007) to identify moments of the conditional
distribution of a true Y given a trueXwhenboth aremeasuredwith error, themeasurement errors in Y and
X are correlated, and the true unknownmodel of Y given X has nonseparable model errors. After showing
nonparametric identification, we provide a sieve generalized method of moments based estimator of the
model, and apply it to nonparametric Engel curve estimation. In our application measurement errors on
the expenditures of a goodY are by construction correlatedwithmeasurement errors in total expenditures
X. This problem, which is present in many consumption data sets, has been ignored in most demand
applications. We find that accounting for this problem casts doubt on Hildenbrand’s (1994) ‘‘increasing
dispersion’’ assumption.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We consider identification and estimation of conditional mo-
ments of a dependent variable Y given a regressor X in nonpara-
metric regression models where both Y and X are mismeasured,
and the measurement errors in Y and X are correlated. For exam-
ple, correlatedmeasurement errors are likely in survey data where
each respondent’s reporting biases or tendencies to err affect mul-
tiple variables that he or she self reports.

An example application that we consider empirically is
consumer demand estimation, where Y is the quantity or expendi-
tures demanded of some good or service, and X is total consump-
tion expenditures on all goods. In most consumption data sets
(e.g., theUSConsumer Expenditure Survey or theUKFamily Expen-
diture Survey), total consumption X is constructed as the sum of
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expenditures on individual goods, so by construction anymeasure-
ment error in Y will also appear as a component of, and hence
be correlated with, the measurement error in X . Similar problems
arise in profit, cost, or factor demand equations in production, and
in autoregressive or other dynamic models where sources of mea-
surement error are not independent over time.

Our identification procedure allows us to distinguish measure-
ment errors from other sources of error that are due to unobserved
structural or behavioral heterogeneity. This is important in appli-
cations because many policies may depend on the distribution of
structural unobserved heterogeneity, but not on measurement er-
ror. For example, the effects of an income tax on aggregate demand
or savings depend on the distribution of income elasticities in the
population. In contrast to our results, most empirical analyses im-
plicitly or explicitly attribute either none or all of estimated model
errors to unobserved heterogeneity.

In the consumer demand application, it has long been known
that formost goods, empirical estimates of Var(Y |X) are increasing
in X . For example, Hildenbrand (1994, Figs. 3.6 and 3.7) documents
this phenomenon for a variety of goods in two different countries,
calls it the ‘‘increasing dispersion’’ assumption, and exploits it as
a behavioral feature that helps give rise to the aggregate law of
demand. This property is also often used to justify estimating Engel
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curves in budget share instead of quantity form, to reduce the
resulting error heteroskedasticity. However, in this paper we find
empirically that while this phenomenon clearly holds in estimates
of Var(Y |X) on raw data, after nonparametrically accounting for
joint measurement error in Y and X , the evidence for increasing
dispersion becomes considerably weaker, suggesting that this well
documented feature of Engel curve estimates may be in part an
artifact of measurement errors rather than a feature of behavior.

Our identification strategy is an extension of Schennach (2007),
who provides nonparametric identification of the conditional
mean of Y given X (using instruments Q ) when X is a classically
mismeasured regressor.We extend Schennach (2007) primarily by
allowing for ameasurement error term in Y thatmay be correlated
with the measurement error in X . An additional extension is
that we identify higher moments of the true Y given the true X
instead of just the conditional mean. A further extension allows
the measurement error in X to take a multiplicative form that is
particularly well suited for our Engel curve application. Our proofs
make use of recent machinery provided by Zinde-Walsh (2014).

Building on estimators like Newey (2001), Schennach (2007)
bases identification on taking Fourier transforms of the conditional
means of Y and of XY given instruments. Our main insight is that,
if additivemeasurement errors in X and Y are correlatedwith each
other but otherwise have some of the properties of classical mea-
surement errors, then their presence will only affect the Fourier
transform on a finite number of points, so identification will still
be possible. Our further extensions exploit similar properties in dif-
ferent measurement error specifications, and our empirical appli-
cation makes use of some special features of Engel curves to fully
identify higher moments.

There is a large literature on the estimation of measurement
error models. In addition to Schennach (2007), more recent
work on measurement errors in nonparametric regression models
includes Delaigle et al. (2009), Rummel et al. (2010), Carroll et al.
(2010), Meister (2011), and Carroll et al. (2011). Recent surveys
containing many earlier references include Carroll et al. (2006)
and Chen et al. (2011).1

In the literaturewe find several examples of Engel curve estima-
tion in the presence of measurement errors. Hausman et al. (1991,
1995) provide estimators for polynomial Engel curves with clas-
sically mismeasured X , Newey (2001) estimates a nonpolynomial
parametric Engel curve with mismeasured X , Blundell et al. (2007)
estimate a semi-parametric model of Engel curves that allows X to
be endogenous and hence mismeasured, and Lewbel (1996) iden-
tifies and estimates Engel curves allowing for correlated measure-
ment errors in X and Y as we do, but does so in the context of a
parametric model of Y given X .2

The conditional distribution of the true Y given the true X
in Engel curves corresponds to the distribution of preference
heterogeneity parameters in the population, which can be of
particular interest for policy analysis. For example, consider the
effect on demand of introducing a tax cut or tax increase that shifts
households’ total expenditure levels. This will in general affect

1 Earlier econometric papers closely related to Schennach (2007), but exploiting
repeatedmeasurements, areHausmanet al. (1991), Schennach (2004) and Li (2002).
Most of these assume two mismeasures of the true X are available, one of which
could have errors correlated with the measurement error Y .
2 More generally, within econometrics there is a large recent literature on

nonparametric identification of models having nonseparable errors (e.g., Chesher,
2003; Meister, 2007; Hoderlein and Mammen, 2007, and Imbens and Newey,
2009), multiple errors (e.g. random coefficient models like Beran et al., 1996 and
generalizations like Hoderlein et al., 2011 and Lewbel, 2011) or both (e.g., Matzkin,
2003). This paper contributes to that literature by identifying models that
have both additive measurement error and structural nonseparable unobserved
heterogeneity.

the entire distribution of demand, not just its mean, both because
Engel curves are generally nonlinear and because preferences are
heterogeneous. Recoveringmoments of the distribution of demand
is useful because many policy indicators, such as the welfare
implication of a tax change, will in turn depend on more features
of the distribution of demand than just its mean.

The next two sections show identification of the model with
standard additivemeasurement error and of the specificationmore
specifically appropriate for Engel curve data. We then describe
our sieve based estimator, and provide a simulation study. After
that is an empirical application to estimating food and clothing
expenditures in US Consumer Expenditure Survey data, followed
by conclusions and an appendix providing proofs.

2. Overview

Suppose that scalar random variables Y ∗ and X∗ are measured
with error, so we only observe Y and X where:

Y = Y ∗
+ S,

X = X∗
+ W ,

with S and W being unobserved measurement errors that we
assume, for now, to have the classical property of being mean zero
with S,W ⊥ Y ∗, X∗. This assumption is just made here and now to
ease exposition; our formal results will substantially relax these
independence assumptions, replacing them with Assumption 1.
We will later further generalize the model to include different
specifications for the measurement errors. We explicitly allow S
and W to be correlated with each other. This might be due to the
nature of the variables involved, or caused by the way in which Y
andX are collected, as is the case for consumptiondata as described
in the Introduction, or when related reporting biases affect the
collection of both Y and X .

The model considered might also arise because of nondiffer-
ential properties of the measurement error in X . In the statistics
literature, a measurement error W in X is called ‘‘differential’’ if
it affects the observed outcome Y , after conditioning on the true
X∗, that is, if Y | X∗,W does not equal Y | X∗ (see, e.g., Carroll
et al. (2006)). An alternative application of our identification re-
sults would be for a model in which Y is not mismeasured, and the
additive error S instead represents the effect of differential mea-
surement error W on the true observed outcome Y . In this setup
Y | X∗ is in general different from Y | X∗,W , with the two distri-
butions being equal only if S and W are independent, so that the
amount of correlation between S andW could be thought of as the
extent of the departure from the nondifferential assumption onW .
Since thenature of S does not affect our identification result, to ease
exposition, in the followingwewill refer to S only asmeasurement
error in Y ∗.

Without loss of generality we specify Y ∗ as

Y ∗
= H(X∗,U),

where H(·, ·) is an unknown function of a scalar random regressor
X∗, and a randomscalar or vector of nonseparable unobservablesU ,
which can be interpreted as regressionmodel errors or unobserved
heterogeneity in the population. The extension to inclusion of
other (observed) covariates will be straightforward, so we drop
them for now.

In this setup our primary goal is identification (and later estima-
tion) of the nonparametric regression function E [H(X∗,U) | X∗],
but we more generally consider identification of conditional mo-
ments E


H(X∗,U)k | X∗


for integers k. Thus our results can be in-

terpreted as separating the impact of unobserved heterogeneity U
from the effects of measurement errors on the relationship of Y to
X . We do not deal directly with estimation of H and of U , but these
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