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a b s t r a c t

We develop an information theoretic framework for maximum likelihood estimation of diffusionmodels.
Two information criteria that measure the divergence of a diffusion process from the true diffusion are
defined. The maximum likelihood estimator (MLE) converges asymptotically to the limit that minimizes
the criteria when sampling interval decreases as sampling span increases. When both drift and diffusion
specifications are correct, the criteria become zero and the inverse curvatures of the criteria equal the
asymptotic variance of the MLE. For misspecified models, the minimizer of the criteria defines pseudo-
true parameters. Pseudo-true drift parameters depend on approximate transition densities if used.
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1. Introduction

We develop an information theoretic framework for maximum
likelihood estimation of diffusion models in an asymptotic envi-
ronment in which sampling interval shrinks to zero as sampling
span increases to infinity. The new approach provides a unified
framework within which we can analyze both correctly specified
and misspecified diffusion models.

For discrete time models, White (1982) gives an information
theoretic foundation for analyzing the maximum likelihood esti-
mator (MLE). His theory is suitable for the models analyzed with
the conventional large sample theory with fixed sampling interval.
For diffusion models, estimation and inference under decreasing
sampling interval were studied previously by, for example, Bandi
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and Phillips (2003), Tang and Chen (2009), Chang and Chen (2011),
Jeong and Park (2013), and Choi et al. (2014). Specifically, Jeong
and Park (2013) study themaximum likelihood estimation for cor-
rectly specified parametric models for both stationary and non-
stationary processes. Choi et al. (2014) provide some asymptotic
results for misspecified models, although their main focus is on
model selection testing.

The theory developed in Jeong and Park (2013) and Choi et al.
(2014) can explain the differential properties of the drift and dif-
fusion parameter estimators observed in high frequency samples.
They show that the rates of information accumulation for drift
and diffusion parameters are different, and both sample size and
sampling span are important for diffusion parameter estimation
whereas only sampling span matters for drift parameter estima-
tion. The present paper provides an information theoretic founda-
tion for their new asymptotic theory.

In White’s theory, the Kullback–Leibler information criterion
(KLIC, Kullback and Leibler (1951)) plays a key role in understand-
ing the asymptotic properties of the MLE. He shows that the MLE
converges to the limit thatminimizes the KLIC from the true distri-
bution and derives asymptotic properties of the MLE under model
misspecification. He also shows that the usual inference proce-
dure with the Likelihood Ratio, Lagrange Multiplier, and Wald test
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statistics is not valid for amisspecifiedmodel. Naturally, we are in-
terested in the questions similar to those thatWhite has addressed
in his paper. Under the new asymptotic framework with decreas-
ing sampling interval, do the MLEs of misspecified diffusion mod-
els converge to some limits asymptotically, do the limits have any
meaning, are the usual inference procedures based on likelihood
ratios valid, what is the consequence of misspecification in either
the drift or the diffusion function only, what is the impact of having
to use an approximate transition density when the exact transition
density is unknown in closed-form?We provide an answer to each
of these questions in this paper.

Based on the KLIC, we develop two-tier information criteria,
which we refer to as the primary and secondary information
criteria. The criteria measure the divergence of a diffusion process
M from the true diffusion X . The primary criterion depends on the
diffusion function ofM , and equals zero if and only if the diffusion
function of M is the same as that of X . The secondary criterion
becomes zero if both drift and diffusion functions ofM are correct.

Our new information criteria play a similar role as the KLIC
in White (1982). When sampling interval decreases as sampling
span increases, the MLE asymptotically converges to the limit
that minimizes the two criteria. For correctly specified diffusion
models, the two criteria are minimized at the true parameter
value, therefore, the MLE is consistent. However, for misspecified
diffusion models, there is no parameter value that makes both
criteria exactly zero. In this case, the minimizer of the criteria is
said to be the pseudo-true parameter and the MLE converges to
this parameter asymptotically.

Because the primary criterion depends on diffusion specifica-
tion, but not on drift specification of a model, the primary criterion
can be minimized to zero as long as diffusion function is correctly
specified. Consequently, the diffusion function estimator is consis-
tent regardless of drift functionmisspecification. However, the sec-
ondary criterion depends on both diffusion and drift specifications.
Therefore, even if drift function specification is correct, the MLE of
the drift parameter may not be consistent when diffusion function
is misspecified.

In most applications, we do not know the exact transition den-
sity of amodel in closed-form. Hence, wemust use an approximate
transition density. We show that the primary criterion is invari-
ant to approximate transition densities that satisfy some regular-
ity conditions that are always met by the exact transition density.
Especially, the primary criterion is the same for the three popu-
lar approximate transition densities, the Euler, Milstein, and Aït-
Sahalia’s closed-form approximate transition densities. However,
the secondary criterion depends on the choice of an approximate
transition density. This implies that the pseudo-true drift parame-
ter depends on the choice of an approximate transition density if
used. An exception to this occurs when diffusion function is cor-
rectly specified. Under correct diffusion function specification, the
secondary criterion has the same form for the exact and the popu-
lar three approximate transition densities mentioned above.

As explained previously, when drift function is correctly spec-
ified but diffusion function is misspecified, the drift estimator is
not consistent in general. But we show that the Euler approximate
transition density has a robustness property in the sense that the
MLE of the drift parameter converges asymptotically to the true
value regardless of the degree of misspecification in the diffusion
function. For the Milstein and Aït-Sahalia’s closed-form approxi-
mate transition densities, the MLE of the drift parameter may not
converge to the true parameter value. AMonte Carlo study is given
in Section 3.3 to demonstrate this phenomenon.

We also study the asymptotic distribution of the MLE for both
correctly specified and misspecified models. When a diffusion
model is correctly specified, we show that the asymptotic vari-
ances of the MLE of diffusion and drift parameters are given by the

inverse curvatures of the primary and secondary criteria, respec-
tively. Formisspecifiedmodels, the asymptotic variance of theMLE
depends on both expectedHessianmatrix and covariancematrix of
score functions. Based on this result, a misspecification test using
the information matrix identity is developed in Section 3.2.

The theory developed in this paper has many potential appli-
cations in finance and economics. They include estimation and
specification testing of interest rates (Aït-Sahalia, 1999), volatility
(Aït-Sahalia and Kimmel, 2007), and term structure models (Aït-
Sahalia and Kimmel, 2010). Our theory is applicable to partially or
completelymisspecifiedmodels aswell as correctly specifiedmod-
els, and therefore, it provides empirical researchers with a more
general perspective and new insights on the maximum likelihood
estimation and inference of the diffusion models widely used in
various financial and economic applications.

We develop the new information criteria in the next section,
and analyze the asymptotic properties of theMLE in an information
theoretic framework in Section 3.

2. Divergence of diffusion processes

Let W be the standard Brownian motion defined on a
probability space (Ω, F, P), and X be a stationary diffusion on
D ⊂ R that solves the stochastic differential equation (SDE)

dXt = µ0(Xt) dt + σ0(Xt) dWt (2.1)

with a drift function µ0(·) and a diffusion function σ0(·). We
assume that SDEs in this paper satisfy the conditions in Karatzas
and Shreve (1991) to admit a weak solution. Suppose we have a
parametric diffusion modelM(θ) for X given by

M(θ) : dXt = µ(Xt; α) dt + σ(Xt; β) dWt , (2.2)

where µ(·; α) and σ(·; β) > 0 are known functions with an un-
known parameter vector θ = (α, β) in a compact set Θ ⊂ Rk. A
diffusion modelM(θ) is misspecified if there exists no θ ∈ Θ such
that µ0(·) = µ(·; α) and σ0(·) = σ(·; β) on D . In this paper, we
separate the drift parameter α from the diffusion parameter β be-
cause their asymptotic properties are quite different. If a parameter
appears in both µ(·) and σ(·) as in transformed diffusion models
such as Bu et al. (2011) and Forman and Sørensen (2014), the the-
ory developed in this paper suggests that the asymptotic theory for
β would apply to such parameter.

Let p0(t, x, y) be the transition density from X0 = x to Xt =

y of the true process X that solves (2.1) and p(t, x, y; θ) be the
exact or an approximate transition density of M(θ). To define
how faraway M(θ) is from X , we consider the KLIC from the
transition density p0(t, x, y) to p(t, x, y; θ). The KLIC(P,Q ) from
a probability measure P to an equivalent (mutually absolutely
continuous) probability measure Q , is defined by

KLIC(P,Q ) ≡


log


dP
dQ


dP,

and it is infinite if P and Q are not equivalent. See Csiszár (1967a,b,
1975) for more general divergence measures.

Based on the KLIC, define the divergence measure

Dt(θ) ≡ E

log

p0(t, X0, Xt)

p(t, X0, Xt; θ)


, (2.3)

where the expectation is taken with respect to the true diffusion
unconditionally. The function Dt(θ) characterizes the divergence
from the true process X toM(θ) at various transition intervals. For
instance, Dt(θ) for small t would measure how close the model
transition density p(t, x, y; θ) is from the true transition density
p0(t, x, y) for observations X0 and Xt obtained over a small time
interval t . In the limit of t → ∞, D∞(θ) would measure the
divergence of the marginal densities of X and M(θ).
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