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a b s t r a c t

We construct a generic confidence interval for a conditional quantile via the direct approach. It avoids
estimating the conditional density function of the dependent variable given the covariate and is asymp-
totically valid for any conditional quantile, any conditional quantile estimator, and any data structure,
provided that certain weak convergence of the conditional quantile process holds for the original quan-
tile estimator. We also construct a generic confidence band for the conditional quantile function across a
range of covariate values. By using Yang–Stute estimator and two semiparametric quantile functions, we
demonstrate the flexibility and simplicity of the direct approach. The advantages of our new confidence
intervals are borne out in a simulation study.
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1. Introduction

In their seminal paper, Koenker and Bassett (1978) propose to
use linear quantile regression to examine effects of an observable
covariate on the distribution of a dependent variable other than the
mean. Since then, linear quantile regression has become a dom-
inant approach in empirical work in economics, see e.g., Buchin-
sky (1994) and Koenker (2005). Linearity adopted in Koenker and
Bassett (1978) has been relaxed to accommodate possibly nonlin-
ear effects of the covariates on the conditional quantile of the de-
pendent variable in nonparametric and semiparametric quantile
regression models. The ‘check function’ approach of Koenker and
Bassett (1978) has been extended to estimating these models as
well, see e.g., Chaudhuri (1991), Yu and Jones (1998) and Guerre
and Sabbah (2012) for local polynomial estimation of regression
quantiles; Lee (2003) and Song et al. (2012) for partial linear
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quantile regression models; Ichimura and Lee (2010), and Kong
and Xia (2012) for single index quantile regression models.1

For nonparametric conditional quantiles, an alternative esti-
mation approach to the ‘check function’ approach is taken in
Stute (1986), Bhattacharya and Gangopadhyay (1990), Fan and Liu
(2015), and Li and Racine (2008), among others. In this approach,
the conditional distribution function of the dependent variable Y
given the covariate X is estimated first and the generalized in-
verse of this estimator at a given quantile level p ∈ (0, 1) is taken
as an estimator of the pth conditional quantile. Stute (1986) and
Bhattacharya and Gangopadhyay (1990) focus on univariate co-
variate and estimate the conditional distribution function by k-NN
method, while Fan and Liu (2015) and Li and Racine (2008) allow
for multivariate covariate and adopt respectively k-NN and kernel
estimators of the conditional distribution function. Donald andHsu
(2014) use this approach to estimate conditional quantiles of po-
tential outcomes in a treatment effect model.

1 Conditional quantile function also plays an important role in the non-separable
structural econometrics literature, see e.g., Chesher (2003), and in the study of
quantile treatment effects, see e.g., Fan and Park (2011).
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Under regularity conditions, existingwork establish asymptotic
normality of the conditional quantile estimators which is the ba-
sis for the Wald-type inference, i.e., using the t statistic to test hy-
potheses or form confidence intervals (CI) for the true conditional
quantiles. Regardless of the approach used to estimate the condi-
tional quantile in parametric, semiparametric, or nonparametric
quantile regressionmodels, one common feature of the asymptotic
distributions of the conditional quantile estimators is that their
asymptotic variances depend on the conditional (quantile) density
function of Y given X = x and some even depend on the density
function of X , see e.g., Horowitz (1998), Li and Racine (2008), Har-
dle and Song (2010), and Song et al. (2012), among others. As a
result, inference procedures for the conditional quantiles based on
the asymptotic distributions of these estimators require consistent
estimators of the conditional (quantile) density function of Y given
X = x and/or the density of X both involving bandwidth choices.
Numerical evidence presented in De Angelis et al. (1993), Horowitz
(1998), and Kocherginsky et al. (2005) shows that although asymp-
totically valid, these inference procedures are sensitive in finite
samples to the choice of the smoothing parameter used to estimate
the conditional (quantile) density function.

Various alternative approaches have been proposed in the
current literature to improve on the finite sample performance
of Wald-type inferences. Most of these are developed for linear
or parametric conditional quantile regression models. First, Goh
and Knight (2009) propose a different scale statistic to standardize
the estimator of the model parameter in linear quantile regression
models resulting in a nonstandard inference procedure; second,
Zhou and Portnoy (1996) construct CIs/bands directly from pairs
of estimates of conditional quantiles in the location–scale forms
of linear quantile regression models extending the direct or
order statistics approach for sample quantiles in Thompson
(1936), see also Serfling (1980), and van der Vaart (1998); third,
Gutenbrunner and Jureckova (1992) employ rank scores to test a
class of linear hypotheses; fourth, Whang (2006) and Otsu (2008)
apply the empirical likelihood approach to parametric quantile
regression models; lastly, MCMC related approaches have been
proposed to improve standard resampling or simulationparadigms
in parametric quantile regression models: He and Hu (2002)
obtain their resampling estimators which solve one-dimensional
estimating equation recursively along the generatedMarkov chain;
and Chernozhukov et al. (2009) develop finite sample inference
procedures based on conditional pivotal statistics. A nice survey of
various inference procedures targeted at linear quantile regression
models could be found in Kocherginsky et al. (2005).

Compared with parametric quantile regression models, infer-
ence in nonparametric and semiparametric quantile regression
models is still in its infancy. The only alternative approach to the
Wald-type and bootstrap inferences that is currently available is
the empirical likelihood procedure in Xu (2013) for nonparamet-
ric quantile regression models.2 In semiparametric quantile re-
gression models including partial linear and single index models,
only Wald-type and bootstrap inferences are available. Although
the empirical likelihood approach in Xu (2013) avoids estimation
of the conditional (quantile) density function and performs bet-
ter than the Wald-type inference procedures, it is known to be
computationally costly. Among existing approaches to inference in
parametric quantile regressionmodels, the direct approach and the
Wald approach are the simplest to implement and least costly com-
putationally. The direct approach only requires computing pairs of
the quantile estimate. Moreover it does not rely on any estimate of

2 After finishing the first version of this paper,we cameacross Kaplan (2013),who
proposed similar inference procedures for nonparametric conditional quantiles to
Example 2.1 in Section 2 of this paper.

the conditional (quantile) density function and exhibits superior
finite sample performance to the Wald-type inference, see Zhou
and Portnoy (1996). However, as discussed in Portnoy (2012), it
appears that the direct approach in Zhou and Portnoy (1996) has
theoretical justification only under location–scale forms of linear
quantile regression models.

This paper aims at bridging this gap. Specifically, it makes two
main contributions to inference on conditional quantiles. First, we
construct a generic CI for a conditional quantile from any given
estimator of the conditional quantile via the direct approach. Our
generic CI makes use of two estimates of the conditional quantile
function evaluated at two appropriately chosen quantile levels. If
the original quantile estimator is monotone in the quantile level
p ∈ (0, 1), then the two estimates are computed from this estima-
tor; else the two estimates are computed from the monotone re-
arranged version of the original quantile estimator as proposed in
Chernozhukov et al. (2010). In contrast to the standard Wald type
CI, ours circumvents the need to estimate the conditional density
function of the dependent variable given the covariate. We show
that our new CI is asymptotically valid for any conditional quantile
(parametric, nonparametric, or semiparametric), any conditional
quantile estimator (standard kernel, local polynomial or sieve es-
timates), and any data structure (random samples, time series, or
censored data), provided that certainweak convergence of the con-
ditional quantile process holds for the preliminary quantile esti-
mator. In the same spirit, we also construct a generic confidence
band (CB) for the conditional quantile function across a range of
covariate values focusing on the nonparametric setting and a class
of quantile estimators obtained from inverting proper estimators
of the conditional distribution function of Y given X . Since mem-
bers of this class of quantile estimators are monotone by con-
struction, monotone rearrangement is avoided. Second, we use a
specific estimator, the Yang–Stute (also known as the symmetrized
k-NN) estimator for a nonparametric quantile function, and two
popular semiparametric quantile functions to demonstrate that of-
tentimes by a judicious choice of the quantile estimator combined
with the specific model structure, one may further take advantage
of the flexibility and simplicity of the direct approach. For instance,
by using the Yang–Stute estimator, we construct CIs and bands for
a nonparametric and two semiparametric quantile functions that
are free from additional bandwidth choices involved in estimating
not only the conditional but also the marginal density functions
and that are very easy to compute. The reason that we choose the
Yang–Stute estimator is its simplicity and elegance; it inherits the
so-called asymptotic distributional-free property (Stute, 1984b)
and avoids estimating the covariate’s density function (unlike stan-
dard kernel estimators), sowe are able to eliminate all unnecessary
tuning parameters in our CIs and CBs. Besides, as we directly invert
conditional distribution functions, the resulting conditional quan-
tile estimators are indeedmonotone, so there is no need for mono-
tone rearrangement. Of course, practitioners are free to choose
their favorite preliminary quantile estimators and under the mild
high level assumptions below, our generic CIs/CBs would apply.

Like the empirical likelihood CI for a nonparametric conditional
quantile in Xu (2013), our CIs/bands for nonparametric conditional
quantiles based on the Yang–Stute estimator internalize the con-
ditional quantile density estimation of Y given X and the covariate
density estimation and they are not necessarily symmetric. Com-
pared with Xu (2013), our procedure is much easier to implement
anddoes not require optimization. For conditional quantiles in par-
tial linear and single index quantile regressions, direct applications
of the generic CI and CB would require monotone rearrangement,
but by making use of the model structures, we construct CIs and
CBs that are easy to implement avoidingmonotone rearrangement.
A small scale simulation study demonstrates the advantages and
feasibility of our CIs/bands over existing ones in practically rele-
vant model set-ups.
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